{"title":"Pairwise Disjoint Perfect Matchings in r-Edge-Connected r-Regular Graphs","authors":"Yulai Ma, D. Mattiolo, E. Steffen, Isaak H. Wolf","doi":"10.1137/22M1500654","DOIUrl":null,"url":null,"abstract":"Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every $r$-edge-connected $r$-regular graph of even order has $r-2$ pairwise disjoint perfect matchings. We show that this is not the case if $r \\equiv 2 \\text{ mod } 4$. Together with a recent result of Mattiolo and Steffen [Highly edge-connected regular graphs without large factorizable subgraphs, J. Graph Theory, 99 (2022), 107-116] this solves Thomassen's problem for all even $r$. It turns out that our methods are limited to the even case of Thomassen's problem. We then prove some equivalences of statements on pairwise disjoint perfect matchings in highly edge-connected regular graphs, where the perfect matchings contain or avoid fixed sets of edges. Based on these results we relate statements on pairwise disjoint perfect matchings of 5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the $5$-Cycle Double Cover Conjecture.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"1 1","pages":"1548-1565"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22M1500654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every $r$-edge-connected $r$-regular graph of even order has $r-2$ pairwise disjoint perfect matchings. We show that this is not the case if $r \equiv 2 \text{ mod } 4$. Together with a recent result of Mattiolo and Steffen [Highly edge-connected regular graphs without large factorizable subgraphs, J. Graph Theory, 99 (2022), 107-116] this solves Thomassen's problem for all even $r$. It turns out that our methods are limited to the even case of Thomassen's problem. We then prove some equivalences of statements on pairwise disjoint perfect matchings in highly edge-connected regular graphs, where the perfect matchings contain or avoid fixed sets of edges. Based on these results we relate statements on pairwise disjoint perfect matchings of 5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the $5$-Cycle Double Cover Conjecture.