Pairwise Disjoint Perfect Matchings in r-Edge-Connected r-Regular Graphs

Yulai Ma, D. Mattiolo, E. Steffen, Isaak H. Wolf
{"title":"Pairwise Disjoint Perfect Matchings in r-Edge-Connected r-Regular Graphs","authors":"Yulai Ma, D. Mattiolo, E. Steffen, Isaak H. Wolf","doi":"10.1137/22M1500654","DOIUrl":null,"url":null,"abstract":"Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every $r$-edge-connected $r$-regular graph of even order has $r-2$ pairwise disjoint perfect matchings. We show that this is not the case if $r \\equiv 2 \\text{ mod } 4$. Together with a recent result of Mattiolo and Steffen [Highly edge-connected regular graphs without large factorizable subgraphs, J. Graph Theory, 99 (2022), 107-116] this solves Thomassen's problem for all even $r$. It turns out that our methods are limited to the even case of Thomassen's problem. We then prove some equivalences of statements on pairwise disjoint perfect matchings in highly edge-connected regular graphs, where the perfect matchings contain or avoid fixed sets of edges. Based on these results we relate statements on pairwise disjoint perfect matchings of 5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the $5$-Cycle Double Cover Conjecture.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"1 1","pages":"1548-1565"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22M1500654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every $r$-edge-connected $r$-regular graph of even order has $r-2$ pairwise disjoint perfect matchings. We show that this is not the case if $r \equiv 2 \text{ mod } 4$. Together with a recent result of Mattiolo and Steffen [Highly edge-connected regular graphs without large factorizable subgraphs, J. Graph Theory, 99 (2022), 107-116] this solves Thomassen's problem for all even $r$. It turns out that our methods are limited to the even case of Thomassen's problem. We then prove some equivalences of statements on pairwise disjoint perfect matchings in highly edge-connected regular graphs, where the perfect matchings contain or avoid fixed sets of edges. Based on these results we relate statements on pairwise disjoint perfect matchings of 5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the $5$-Cycle Double Cover Conjecture.
r边连通r正则图的两两不相交完美匹配
[j] .北京大学学报(自然科学版)。Ser的理论。B, 141(2020), 343-351]问是否每个$r$-边连通$r$-偶阶正则图都有$r-2$对不相交完美匹配。如果$r \equiv 2 \text{mod} 4$,则不会出现这种情况。结合Mattiolo和Steffen最近的结果[没有大可分解子图的高度边连通正则图,J.图论,99(2022),107-116],这解决了所有偶数$r$的Thomassen问题。结果表明,我们的方法仅限于托马森问题的偶数情况。然后,我们证明了高度边连通正则图中对不相交完美匹配命题的一些等价性,其中完美匹配包含或避免固定的边集。基于这些结果,我们将5边连通5正则图的两两不相交完美匹配命题与著名的关于三次图的猜想,如Fan-Raspaud猜想、Berge-Fulkerson猜想和$5$-Cycle双盖猜想联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信