Félix Gontier, C. Lavandier, P. Aumond, M. Lagrange, J. Petiot
{"title":"Estimation of the Perceived Time of Presence of Sources in Urban Acoustic Environments Using Deep Learning Techniques","authors":"Félix Gontier, C. Lavandier, P. Aumond, M. Lagrange, J. Petiot","doi":"10.3813/aaa.919384","DOIUrl":null,"url":null,"abstract":"The impact of urban sound on human beings has often been studied from a negative point of view (noise pollution). In the two last decades, the interest of studying its positive impact has been revealed with the soundscape approach (resourcing spaces). The literature shows that the recognition\n of sources plays a great role in the way humans are affected by sound environments. There is thus a need for characterizing urban acoustic environments not only with sound pressure measurements but also with source-specific attributes such as their perceived time of presence, dominance or\n volume. This paper demonstrates, on a controlled dataset, that machine learning techniques based on state of the art neural architectures can predict the perceived time of presence of several sound sources at a sufficient accuracy. To validate this assertion, a corpus of simulated sound\n scenes is first designed. Perceptual attributes corresponding to those stimuli are gathered through a listening experiment. From the contributions of the individual sound sources available for the simulated corpus, a physical indicator approximating the perceived time of presence of sources\n is computed and used to train and evaluate a multi-label source detection model. This model predicts the presence of simultaneously active sources from fast third octave spectra, allowing the estimation of perceptual attributes such as pleasantness in urban sound environments at a sufficient\n degree of precision.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 11
Abstract
The impact of urban sound on human beings has often been studied from a negative point of view (noise pollution). In the two last decades, the interest of studying its positive impact has been revealed with the soundscape approach (resourcing spaces). The literature shows that the recognition
of sources plays a great role in the way humans are affected by sound environments. There is thus a need for characterizing urban acoustic environments not only with sound pressure measurements but also with source-specific attributes such as their perceived time of presence, dominance or
volume. This paper demonstrates, on a controlled dataset, that machine learning techniques based on state of the art neural architectures can predict the perceived time of presence of several sound sources at a sufficient accuracy. To validate this assertion, a corpus of simulated sound
scenes is first designed. Perceptual attributes corresponding to those stimuli are gathered through a listening experiment. From the contributions of the individual sound sources available for the simulated corpus, a physical indicator approximating the perceived time of presence of sources
is computed and used to train and evaluate a multi-label source detection model. This model predicts the presence of simultaneously active sources from fast third octave spectra, allowing the estimation of perceptual attributes such as pleasantness in urban sound environments at a sufficient
degree of precision.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.