{"title":"Extremal solution and Liouville theorem for anisotropic elliptic equations","authors":"Yuan Li","doi":"10.3934/cpaa.2021144","DOIUrl":null,"url":null,"abstract":"We study the quasilinear Dirichlet boundary problem \n\\begin{equation}\\nonumber \\left\\{ \\begin{aligned} -Qu&=\\lambda e^{u} \\quad \\mbox{in}\\quad\\Omega\\\\ u&=0 \\quad \\mbox{on}\\quad\\partial\\Omega,\\\\ \\end{aligned} \\right. \\end{equation} where $\\lambda>0$ is a parameter, $\\Omega\\subset\\mathbb{R}^{N}$ with $N\\geq2$ be a bounded domain, and the operator $Q$, known as Finsler-Laplacian or anisotropic Laplacian, is defined by $$Qu:=\\sum_{i=1}^{N}\\frac{\\partial}{\\partial x_{i}}(F(\\nabla u)F_{\\xi_{i}}(\\nabla u)). $$ Here, $F_{\\xi_{i}}=\\frac{\\partial F}{\\partial\\xi_{i}}$ and $F: \\mathbb{R}^{N}\\rightarrow[0,+\\infty)$ is a convex function of $ C^{2}(\\mathbb{R}^{N}\\setminus\\{0\\})$, that satisfies certain assumptions. We derive the existence of extremal solution and obtain that it's regular, if $N\\leq9$. \nWe also concern the H\\'{e}non type anisotropic Liouville equation, namely, $$-Qu=(F^{0}(x))^{\\alpha}e^{u}\\quad\\mbox{in}\\quad\\mathbb{R}^{N}$$ where $\\alpha>-2$, $N\\geq2$ and $F^{0}$ is the support function of $K:=\\{x\\in\\mathbb{R}^{N}:F(x)<1\\}$ which is defined by $$F^{0}(x):=\\sup_{\\xi\\in K}\\langle x,\\xi\\rangle.$$ We obtain the Liouville theorem for stable solutions and the finite Morse index solutions for $2\\leq N<10+4\\alpha$ and $3\\leq N<10+4\\alpha^{-}$ respectively, where $\\alpha^{-}=\\min\\{\\alpha,0\\}$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2021144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study the quasilinear Dirichlet boundary problem
\begin{equation}\nonumber \left\{ \begin{aligned} -Qu&=\lambda e^{u} \quad \mbox{in}\quad\Omega\\ u&=0 \quad \mbox{on}\quad\partial\Omega,\\ \end{aligned} \right. \end{equation} where $\lambda>0$ is a parameter, $\Omega\subset\mathbb{R}^{N}$ with $N\geq2$ be a bounded domain, and the operator $Q$, known as Finsler-Laplacian or anisotropic Laplacian, is defined by $$Qu:=\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(F(\nabla u)F_{\xi_{i}}(\nabla u)). $$ Here, $F_{\xi_{i}}=\frac{\partial F}{\partial\xi_{i}}$ and $F: \mathbb{R}^{N}\rightarrow[0,+\infty)$ is a convex function of $ C^{2}(\mathbb{R}^{N}\setminus\{0\})$, that satisfies certain assumptions. We derive the existence of extremal solution and obtain that it's regular, if $N\leq9$.
We also concern the H\'{e}non type anisotropic Liouville equation, namely, $$-Qu=(F^{0}(x))^{\alpha}e^{u}\quad\mbox{in}\quad\mathbb{R}^{N}$$ where $\alpha>-2$, $N\geq2$ and $F^{0}$ is the support function of $K:=\{x\in\mathbb{R}^{N}:F(x)<1\}$ which is defined by $$F^{0}(x):=\sup_{\xi\in K}\langle x,\xi\rangle.$$ We obtain the Liouville theorem for stable solutions and the finite Morse index solutions for $2\leq N<10+4\alpha$ and $3\leq N<10+4\alpha^{-}$ respectively, where $\alpha^{-}=\min\{\alpha,0\}$.