Adaptive sensor cooperation for predicting human mobility

Paul Baumann
{"title":"Adaptive sensor cooperation for predicting human mobility","authors":"Paul Baumann","doi":"10.1145/2638728.2638843","DOIUrl":null,"url":null,"abstract":"My thesis focuses on the prediction of human mobility. I am interested in gaining a deeper understanding of the factors that influence the performance of human mobility prediction algorithms. The main contributions of my work are: the analyses of different factors that influence the performance of mobility predictors, the design and development of a self-adaptive approach for detecting and recognizing users' relevant places, and estimating users' momentary predictability. The latter contribution aims to enable the possibility for the application scenarios to decide how much to trust the provided predictions and mobility data.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2638843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

My thesis focuses on the prediction of human mobility. I am interested in gaining a deeper understanding of the factors that influence the performance of human mobility prediction algorithms. The main contributions of my work are: the analyses of different factors that influence the performance of mobility predictors, the design and development of a self-adaptive approach for detecting and recognizing users' relevant places, and estimating users' momentary predictability. The latter contribution aims to enable the possibility for the application scenarios to decide how much to trust the provided predictions and mobility data.
自适应传感器协同预测人体移动
我的论文主要是关于人类流动性的预测。我对深入了解影响人类移动性预测算法性能的因素很感兴趣。我工作的主要贡献是:分析影响移动性预测器性能的不同因素,设计和开发一种自适应方法来检测和识别用户的相关地点,以及估计用户的瞬时可预测性。后一项贡献旨在使应用程序场景能够决定在多大程度上信任所提供的预测和移动性数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信