A model-based approach for text clustering with outlier detection

Jianhua Yin, Jianyong Wang
{"title":"A model-based approach for text clustering with outlier detection","authors":"Jianhua Yin, Jianyong Wang","doi":"10.1109/ICDE.2016.7498276","DOIUrl":null,"url":null,"abstract":"Text clustering is a challenging problem due to the high-dimensional and large-volume characteristics of text datasets. In this paper, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture model for text clustering (abbr. to GSDPMM) which does not need to specify the number of clusters in advance and can cope with the high-dimensional problem of text clustering. Our extensive experimental study shows that GSDPMM can achieve significantly better performance than three other clustering methods and can achieve high consistency on both long and short text datasets. We found that GSDPMM has low time and space complexity and can scale well with huge text datasets. We also propose some novel and effective methods to detect the outliers in the dataset and obtain the representative words of each cluster.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"116 1","pages":"625-636"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Text clustering is a challenging problem due to the high-dimensional and large-volume characteristics of text datasets. In this paper, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture model for text clustering (abbr. to GSDPMM) which does not need to specify the number of clusters in advance and can cope with the high-dimensional problem of text clustering. Our extensive experimental study shows that GSDPMM can achieve significantly better performance than three other clustering methods and can achieve high consistency on both long and short text datasets. We found that GSDPMM has low time and space complexity and can scale well with huge text datasets. We also propose some novel and effective methods to detect the outliers in the dataset and obtain the representative words of each cluster.
基于模型的离群点检测文本聚类方法
由于文本数据集具有高维、大容量的特点,文本聚类是一个具有挑战性的问题。本文针对文本聚类的Dirichlet过程多项混合模型(简称GSDPMM)提出了一种不需要预先指定簇数的坍缩Gibbs采样算法,可以解决文本聚类的高维问题。我们广泛的实验研究表明,GSDPMM可以获得明显优于其他三种聚类方法的性能,并且可以在长文本和短文本数据集上实现高一致性。我们发现GSDPMM具有较低的时间和空间复杂度,并且可以很好地扩展到庞大的文本数据集。我们还提出了一些新颖有效的方法来检测数据集中的异常值,并获得每个聚类的代表词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信