Numerical method to solve generalized nonlinear system of second order boundary value problems: Galerkin approach

Sadia Akter Lima, Md. Shafiqul Islam, Hazrat Ali̇, M. Kamrujjaman
{"title":"Numerical method to solve generalized nonlinear system of second order boundary value problems: Galerkin approach","authors":"Sadia Akter Lima, Md. Shafiqul Islam, Hazrat Ali̇, M. Kamrujjaman","doi":"10.31197/atnaa.1141150","DOIUrl":null,"url":null,"abstract":"In this study, we consider the system of second order nonlinear boundary value problems (BVPs). We focus on the numerical solutions of \ndifferent types of nonlinear BVPs by Galerkin finite element method (GFEM). First of all, we originate the generalized formulation of GFEM for those type of problems. Then we determine the approximate solutions of a couple of second order nonlinear BVPs by GFEM. The approximate results are unfolded in tabuler form and portrayed graphically along with the exact solutions. Those results demonstrate the applicability, compatibility and accuracy of this scheme.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1141150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we consider the system of second order nonlinear boundary value problems (BVPs). We focus on the numerical solutions of different types of nonlinear BVPs by Galerkin finite element method (GFEM). First of all, we originate the generalized formulation of GFEM for those type of problems. Then we determine the approximate solutions of a couple of second order nonlinear BVPs by GFEM. The approximate results are unfolded in tabuler form and portrayed graphically along with the exact solutions. Those results demonstrate the applicability, compatibility and accuracy of this scheme.
求解广义非线性系统二阶边值问题的数值方法:伽辽金法
本文研究一类二阶非线性边值问题。重点研究了不同类型非线性BVPs的Galerkin有限元数值解。首先,我们提出了这类问题的广义广义有限元公式。然后用广义有限元法确定了一类二阶非线性BVPs的近似解。近似结果以表格形式展开,并与精确解一起用图形表示。结果表明了该方案的适用性、兼容性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信