Lyapunov-type inequalities for third-order linear differential equations under the non-conjugate boundary conditions

M. Aktas, D. Çakmak
{"title":"Lyapunov-type inequalities for third-order linear differential equations under the non-conjugate boundary conditions","authors":"M. Aktas, D. Çakmak","doi":"10.7153/dea-2018-10-14","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the best constant in the Lyapunov-type inequality for thirdorder linear differential equations under the non-conjugate boundary conditions by bounding the Green function of the same problem. In this direction, to the best of our knowledge, there is no paper dealing with Lyapunov-type inequalities for the non-conjugate boundary value problems. By using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding equations.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"219 1","pages":"219-226"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2018-10-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we obtain the best constant in the Lyapunov-type inequality for thirdorder linear differential equations under the non-conjugate boundary conditions by bounding the Green function of the same problem. In this direction, to the best of our knowledge, there is no paper dealing with Lyapunov-type inequalities for the non-conjugate boundary value problems. By using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding equations.
非共轭边界条件下三阶线性微分方程的lyapunov型不等式
本文通过对非共轭边界条件下三阶线性微分方程的格林函数的边界,得到了该方程lyapunov型不等式的最佳常数。在这个方向上,据我们所知,还没有论文处理非共轭边值问题的李雅普诺夫型不等式。利用这些不等式,我们得到了相应方程的特征值的尖锐下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信