CIRCLE APPROXIMATION BY QUARTIC G 2 SPLINE USING ALTERNATION OF ERROR FUNCTION

IF 0.3 Q4 MATHEMATICS, APPLIED
Soo Won Kim, Y. Ahn
{"title":"CIRCLE APPROXIMATION BY QUARTIC G 2 SPLINE USING ALTERNATION OF ERROR FUNCTION","authors":"Soo Won Kim, Y. Ahn","doi":"10.12941/JKSIAM.2013.17.171","DOIUrl":null,"url":null,"abstract":"In this paper we present a method of circular arc approximation by quartic Bezier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvaturecontinuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"138 1","pages":"171-179"},"PeriodicalIF":0.3000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.17.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we present a method of circular arc approximation by quartic Bezier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvaturecontinuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.
利用误差函数交替进行四次g 2样条圆逼近
本文提出了一种用四次贝塞尔曲线逼近圆弧的方法。由于我们的四次近似误差函数的变化,我们的四次近似方法的误差比以前的四次近似方法小。我们的方法产生了一个封闭的误差形式,使得细分算法可用,并且曲率连续四次样条在等长圆弧下细分,直到误差小于公差。我们用一些数值例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信