Plant-Pest-natural enemy model with impulsive biological and chemical control

V. Kumari, Sudipa Chauhan, S. Bhatia, J. Dhar
{"title":"Plant-Pest-natural enemy model with impulsive biological and chemical control","authors":"V. Kumari, Sudipa Chauhan, S. Bhatia, J. Dhar","doi":"10.7153/dea-2018-10-28","DOIUrl":null,"url":null,"abstract":"In this paper, a plant pest mathematical model is presented with integrated pest management through impulse. Two control measures: Biological(Natural Enemies) and Chemical pesticides are taken in consideration in the model through impulse. Boundedness and the sufficient conditions of existence of the positive periodic solutions is established. Further, the local stability of the pest extinction equilibrium point is studied using Floquet’s theory. It is proved that the pest extinction equilibrium point is globally stable at T < Tmax and the system is permanent for T > Tmax . Numerical data per week are taken to illustrate the theoretical results using MATLAB software.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"16 1","pages":"413-431"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2018-10-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a plant pest mathematical model is presented with integrated pest management through impulse. Two control measures: Biological(Natural Enemies) and Chemical pesticides are taken in consideration in the model through impulse. Boundedness and the sufficient conditions of existence of the positive periodic solutions is established. Further, the local stability of the pest extinction equilibrium point is studied using Floquet’s theory. It is proved that the pest extinction equilibrium point is globally stable at T < Tmax and the system is permanent for T > Tmax . Numerical data per week are taken to illustrate the theoretical results using MATLAB software.
生物化学脉冲控制的植物-害虫-天敌模型
本文建立了植物病虫害脉冲综合治理的数学模型。通过脉冲控制,模型考虑了生物(天敌)和化学农药两种控制措施。建立了周期正解的有界性和存在的充分条件。进一步,利用Floquet理论研究了害虫灭绝平衡点的局部稳定性。证明了害虫灭绝平衡点在T < Tmax时是全局稳定的,系统在T < Tmax时是永久的。采用MATLAB软件采用每周的数值数据来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信