REACT: Context-Sensitive Recommendations for Data Analysis

T. Milo, Amit Somech
{"title":"REACT: Context-Sensitive Recommendations for Data Analysis","authors":"T. Milo, Amit Somech","doi":"10.1145/2882903.2899392","DOIUrl":null,"url":null,"abstract":"Data analysis may be a difficult task, especially for non-expert users, as it requires deep understanding of the investigated domain and the particular context. In this demo we present REACT, a system that hooks to the analysis UI and provides the users with personalized recommendations of analysis actions. By matching the current user session to previous sessions of analysts working with the same or other data sets, REACT is able to identify the potentially best next analysis actions in the given user context. Unlike previous work that mainly focused on individual components of the analysis work, REACT provides a holistic approach that captures a wider range of analysis action types by utilizing novel notions of similarity in terms of the individual actions, the analyzed data and the entire analysis workflow. We demonstrate the functionality of REACT, as well as its effectiveness through a digital forensics scenario where users are challenged to detect cyber attacks in real life data achieved from honeypot servers.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Data analysis may be a difficult task, especially for non-expert users, as it requires deep understanding of the investigated domain and the particular context. In this demo we present REACT, a system that hooks to the analysis UI and provides the users with personalized recommendations of analysis actions. By matching the current user session to previous sessions of analysts working with the same or other data sets, REACT is able to identify the potentially best next analysis actions in the given user context. Unlike previous work that mainly focused on individual components of the analysis work, REACT provides a holistic approach that captures a wider range of analysis action types by utilizing novel notions of similarity in terms of the individual actions, the analyzed data and the entire analysis workflow. We demonstrate the functionality of REACT, as well as its effectiveness through a digital forensics scenario where users are challenged to detect cyber attacks in real life data achieved from honeypot servers.
REACT:上下文敏感的数据分析建议
数据分析可能是一项困难的任务,特别是对于非专业用户,因为它需要深入了解所调查的领域和特定的上下文。在这个演示中,我们展示了REACT,一个连接到分析UI并为用户提供个性化分析操作建议的系统。通过将当前用户会话与使用相同或其他数据集的分析师的先前会话进行匹配,REACT能够在给定的用户上下文中识别潜在的最佳下一步分析操作。与之前主要关注分析工作的单个组件的工作不同,REACT提供了一种整体方法,通过利用单个操作、分析数据和整个分析工作流方面的新颖相似性概念来捕获更广泛的分析操作类型。我们通过数字取证场景展示了REACT的功能,以及它的有效性,在这个场景中,用户面临着从蜜罐服务器获得的现实生活数据中检测网络攻击的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信