Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
S. Yazdani, M. Hadizadeh
{"title":"Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations","authors":"S. Yazdani, M. Hadizadeh","doi":"10.1590/S1807-03022012000200005","DOIUrl":null,"url":null,"abstract":"In this paper, we compute piecewise constant bounds on the solution of mixed nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which are guaranteed to contain the exact solution considering all round-off and truncation errors, so the width of interval solutions allows us to control the error estimation. An iterative algorithm to improve the accuracy of initial enclosures is given and its convergence are also investigated. Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm are not restrictive. Mathematical subject classification: 65G20, 45G10, 65G40.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000200005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we compute piecewise constant bounds on the solution of mixed nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which are guaranteed to contain the exact solution considering all round-off and truncation errors, so the width of interval solutions allows us to control the error estimation. An iterative algorithm to improve the accuracy of initial enclosures is given and its convergence are also investigated. Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm are not restrictive. Mathematical subject classification: 65G20, 45G10, 65G40.
非线性Volterra-Fredholm积分方程解的分段常数界
本文计算了混合非线性Volterra-Fredholm积分方程解的分段常数界。封闭是在考虑到所有舍入和截断误差的情况下保证包含精确解的区间形式,因此区间解的宽度允许我们控制误差估计。给出了一种提高初始围合精度的迭代算法,并对其收敛性进行了研究。数值实验表明,与经典方法相比,区间解的精度是合理的,所得到的条件和初始围合是不受限制的。数学学科分类:65G20、45G10、65G40。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信