Counting equilibria in complex systems via random matrices

Pub Date : 2019-10-30 DOI:10.1090/pcms/026/04
Y. Fyodorov
{"title":"Counting equilibria in complex systems via\n random matrices","authors":"Y. Fyodorov","doi":"10.1090/pcms/026/04","DOIUrl":null,"url":null,"abstract":"How many equilibria will a large complex system, modeled by N randomly coupled autonomous nonlinear differential equations typically have? How many of those equilibria are stable, that is are local attractors of the nearby trajectories? These questions arise in many applications and can be partly answered by employing the methods of Random Matrix Theory. The lectures will outline these recent developments. Department of Mathematics, King’s College London, London WC2R 2LS, United Kingdom E-mail address: yan.fyodorov@kcl.ac.uk c ©2017 American Mathematical Society","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/pcms/026/04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How many equilibria will a large complex system, modeled by N randomly coupled autonomous nonlinear differential equations typically have? How many of those equilibria are stable, that is are local attractors of the nearby trajectories? These questions arise in many applications and can be partly answered by employing the methods of Random Matrix Theory. The lectures will outline these recent developments. Department of Mathematics, King’s College London, London WC2R 2LS, United Kingdom E-mail address: yan.fyodorov@kcl.ac.uk c ©2017 American Mathematical Society
分享
查看原文
基于随机矩阵的复杂系统平衡计数
一个由N个随机耦合自治非线性微分方程建模的大型复杂系统通常有多少个平衡点?有多少平衡是稳定的,也就是附近轨迹的局部吸引子?这些问题出现在许多应用中,可以用随机矩阵理论的方法部分地回答。讲座将概述这些最近的发展。伦敦国王学院数学系,伦敦WC2R 2LS,英国E-mail: yan.fyodorov@kcl.ac.uk c©2017美国数学学会
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信