Field of the atmospheric water vapor as a characteristic of heat and dynamic processes at the ocean surface observed by the microwave radiometric means from space
{"title":"Field of the atmospheric water vapor as a characteristic of heat and dynamic processes at the ocean surface observed by the microwave radiometric means from space","authors":"A. Grankov, Aleksandr Milshin, Evgeniy Novichihin","doi":"10.2205/2023es000813","DOIUrl":null,"url":null,"abstract":"An approach to indication and analysis of heat and dynamic processes at the ocean surface and in the atmosphere with the methods of satellite passive microwave radiometry is considered. It bases on a responsiveness of the oceanic and atmospheric up-going microwave radiation to these processes in the spectral band of its attenuation in the atmosphere water vapor, which seems to be as kind of window of the \"radio visibility\" from satellites. The effectiveness of that approach is caused by the fact that atmospheric water vapor is an active participant (agent) in its heat interaction with the ocean surface and, at the same time, serves as its reliable quantitative indicator. Measured from satellites, natural microwave radiation of the atmospheric water vapor gives distinct signals of changes occurring in the frontal, storm and cyclonic zones in the ocean; they are manifested in the form of pics or jumps of the brightness temperature. The paper provides various examples of the study of such processes as the ocean-atmosphere heat interaction at the middle latitudes of the North Atlantic, origination and propagation of the tropical hurricanes in the Gulf of Mexico and Caribbean Sea, atmospheric water vapor transport in the tropical Atlantic and its influence on cyclogenesis in the Gulf of Mexico, etc. The data of satellite, ship and buoy measurements are widely used to attain and verify results of our study.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2205/2023es000813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An approach to indication and analysis of heat and dynamic processes at the ocean surface and in the atmosphere with the methods of satellite passive microwave radiometry is considered. It bases on a responsiveness of the oceanic and atmospheric up-going microwave radiation to these processes in the spectral band of its attenuation in the atmosphere water vapor, which seems to be as kind of window of the "radio visibility" from satellites. The effectiveness of that approach is caused by the fact that atmospheric water vapor is an active participant (agent) in its heat interaction with the ocean surface and, at the same time, serves as its reliable quantitative indicator. Measured from satellites, natural microwave radiation of the atmospheric water vapor gives distinct signals of changes occurring in the frontal, storm and cyclonic zones in the ocean; they are manifested in the form of pics or jumps of the brightness temperature. The paper provides various examples of the study of such processes as the ocean-atmosphere heat interaction at the middle latitudes of the North Atlantic, origination and propagation of the tropical hurricanes in the Gulf of Mexico and Caribbean Sea, atmospheric water vapor transport in the tropical Atlantic and its influence on cyclogenesis in the Gulf of Mexico, etc. The data of satellite, ship and buoy measurements are widely used to attain and verify results of our study.