Scaling up Online Question Answering via Similar Question Retrieval

Chase Geigle, ChengXiang Zhai
{"title":"Scaling up Online Question Answering via Similar Question Retrieval","authors":"Chase Geigle, ChengXiang Zhai","doi":"10.1145/2876034.2893428","DOIUrl":null,"url":null,"abstract":"Faced with growing class sizes and the dawn of the MOOC, educators are in need of tools to help them cope with the growing number of questions asked in large classes since manually answering all the questions in a timely manner is infeasible. In this paper, we propose to exploit historical question/answer data accumulated for the same or similar classes as a basis for automatically answering previously asked questions via the use of information retrieval techniques. We further propose to leverage resolved questions to create test collections for quantitative evaluation of a question retrieval algorithm without requiring additional human effort. Using this evaluation methodology, we study the effectiveness of state of the art retrieval techniques for this special retrieval task, and perform error analysis to inform future directions.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Faced with growing class sizes and the dawn of the MOOC, educators are in need of tools to help them cope with the growing number of questions asked in large classes since manually answering all the questions in a timely manner is infeasible. In this paper, we propose to exploit historical question/answer data accumulated for the same or similar classes as a basis for automatically answering previously asked questions via the use of information retrieval techniques. We further propose to leverage resolved questions to create test collections for quantitative evaluation of a question retrieval algorithm without requiring additional human effort. Using this evaluation methodology, we study the effectiveness of state of the art retrieval techniques for this special retrieval task, and perform error analysis to inform future directions.
通过相似问题检索扩大在线问题回答
面对不断扩大的班级规模和MOOC的到来,教育工作者需要工具来帮助他们应对大班中越来越多的问题,因为及时手动回答所有问题是不可行的。在本文中,我们建议利用相同或类似类别积累的历史问题/答案数据,作为通过使用信息检索技术自动回答先前提出的问题的基础。我们进一步建议利用已解决的问题来创建测试集合,以便对问题检索算法进行定量评估,而不需要额外的人力。使用这种评估方法,我们研究了当前最先进的检索技术对这一特殊检索任务的有效性,并进行了错误分析,以指导未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信