MLOps meets Edge Computing: an Edge Platform with Embedded Intelligence towards 6G Systems

Nikos Psaromanolakis, V. Theodorou, Dimitrios Laskaratos, Ioannis Kalogeropoulos, Maria Eleftheria Vlontzou, Eleni Zarogianni, Georgios Samaras
{"title":"MLOps meets Edge Computing: an Edge Platform with Embedded Intelligence towards 6G Systems","authors":"Nikos Psaromanolakis, V. Theodorou, Dimitrios Laskaratos, Ioannis Kalogeropoulos, Maria Eleftheria Vlontzou, Eleni Zarogianni, Georgios Samaras","doi":"10.1109/EuCNC/6GSummit58263.2023.10188244","DOIUrl":null,"url":null,"abstract":"The evolution towards more human-centered 6G networks requires the extension of network functionalities with advanced, pervasive automation features. In this direction, cloud-native, softwarized network functions and integration of extreme/far edge devices shall be supported by even more distributed and decomposable systems, such as Edge Cloud environments, while building on AI/ML data-driven mechanisms to improve their performance and resilience for the stringent requirements of next-generation applications. In this work, we propose an intelligence-native Edge Management Platform coupled with MLOps functionalities-the $\\pi$-Edge Platform-which encompasses automation features for cloud-native lifecycle management of Edge Services. Our introduced architecture incorporates MLOps services and processes, operating as integrated micro-services with the rest of the $\\pi$-Edge architectural components, ensuring the reliable operation and QoS of Edge network and application services. We experimentally validate our approach with a prototypical implementation of key $\\pi$-Edge features, including the incorporation of state-of-the-art ML models for performance prediction and anomaly detection, on a multi-media streaming use case based on scenarios from real production environment.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"13 1","pages":"496-501"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution towards more human-centered 6G networks requires the extension of network functionalities with advanced, pervasive automation features. In this direction, cloud-native, softwarized network functions and integration of extreme/far edge devices shall be supported by even more distributed and decomposable systems, such as Edge Cloud environments, while building on AI/ML data-driven mechanisms to improve their performance and resilience for the stringent requirements of next-generation applications. In this work, we propose an intelligence-native Edge Management Platform coupled with MLOps functionalities-the $\pi$-Edge Platform-which encompasses automation features for cloud-native lifecycle management of Edge Services. Our introduced architecture incorporates MLOps services and processes, operating as integrated micro-services with the rest of the $\pi$-Edge architectural components, ensuring the reliable operation and QoS of Edge network and application services. We experimentally validate our approach with a prototypical implementation of key $\pi$-Edge features, including the incorporation of state-of-the-art ML models for performance prediction and anomaly detection, on a multi-media streaming use case based on scenarios from real production environment.
MLOps满足边缘计算:面向6G系统的嵌入式智能边缘平台
向更加以人为中心的6G网络发展,需要通过先进的、普遍的自动化功能来扩展网络功能。在这个方向上,云原生的、软件化的网络功能和极/远边缘设备的集成将得到更加分布式和可分解的系统(如边缘云环境)的支持,同时建立在AI/ML数据驱动机制的基础上,以提高其性能和弹性,以满足下一代应用程序的严格要求。在这项工作中,我们提出了一个智能原生边缘管理平台,结合MLOps功能- $\pi$-Edge平台-它包含边缘服务云原生生命周期管理的自动化功能。我们引入的架构集成了MLOps服务和流程,与其他$\pi$-Edge架构组件作为集成微服务运行,确保Edge网络和应用服务的可靠运行和QoS。我们通过实验验证了我们的方法与关键$\pi$-Edge功能的原型实现,包括结合最先进的ML模型进行性能预测和异常检测,基于真实生产环境场景的多媒体流用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信