Akarsh Prabhakara, Vaibhav Singh, Swarun Kumar, Anthony G. Rowe
{"title":"OSPREY","authors":"Akarsh Prabhakara, Vaibhav Singh, Swarun Kumar, Anthony G. Rowe","doi":"10.1145/3457356.3457366","DOIUrl":null,"url":null,"abstract":"Tire wear is a leading cause of accidents. Tire wear is measured either manually, or by embedding sensors in tires, or using off-tire sensors. Manual sensing is extremely tedious. Sensors embedded in tire treads are challenging to design and expensive to embed. Off-tire sensors like laser range finders are prone to debris that may settle in grooves. To overcome these shortcomings, we propose a mmWave radar based tire wear sensor, which is easy to install, and continuously provides accurate and robust tire wear measurements even in the presence of debris.","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"15 1","pages":"28 - 31"},"PeriodicalIF":0.7000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457356.3457366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Tire wear is a leading cause of accidents. Tire wear is measured either manually, or by embedding sensors in tires, or using off-tire sensors. Manual sensing is extremely tedious. Sensors embedded in tire treads are challenging to design and expensive to embed. Off-tire sensors like laser range finders are prone to debris that may settle in grooves. To overcome these shortcomings, we propose a mmWave radar based tire wear sensor, which is easy to install, and continuously provides accurate and robust tire wear measurements even in the presence of debris.