Material segmentation in hyperspectral images with minimal region perimeters

Yu Zhang, C. P. Huynh, N. Habili, K. Ngan
{"title":"Material segmentation in hyperspectral images with minimal region perimeters","authors":"Yu Zhang, C. P. Huynh, N. Habili, K. Ngan","doi":"10.1109/ICIP.2016.7532474","DOIUrl":null,"url":null,"abstract":"We propose a supervised approach to the classification and segmentation of material regions in hyperspectral imagery. Our algorithm is a two-stage process, combining a pixelwise classification step with a segmentation step aiming to minimise the total perimeters of the resulting regions. Our algorithm is distinctive in its ability to ensure label consistency within local homogeneous areas and to generate material segments with smooth boundaries. Furthermore, we establish a new hyperspectral benchmark dataset to demonstrate the advantages of the proposed approach over several state-of-the-art methods.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"213 1","pages":"834-838"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a supervised approach to the classification and segmentation of material regions in hyperspectral imagery. Our algorithm is a two-stage process, combining a pixelwise classification step with a segmentation step aiming to minimise the total perimeters of the resulting regions. Our algorithm is distinctive in its ability to ensure label consistency within local homogeneous areas and to generate material segments with smooth boundaries. Furthermore, we establish a new hyperspectral benchmark dataset to demonstrate the advantages of the proposed approach over several state-of-the-art methods.
最小区域周长高光谱图像的材料分割
提出了一种有监督的方法对高光谱图像中的物质区域进行分类和分割。我们的算法是一个两阶段的过程,结合了像素分类步骤和分割步骤,旨在最小化所得区域的总周长。我们的算法在确保局部均匀区域内标签一致性和生成具有光滑边界的材料段的能力方面是独特的。此外,我们建立了一个新的高光谱基准数据集,以证明所提出的方法优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信