{"title":"A moment closure based on a projection on the boundary of the realizability domain: Extension and analysis","authors":"T. Pichard","doi":"10.3934/krm.2022014","DOIUrl":null,"url":null,"abstract":"A closure relation for moments equations in kinetic theory was recently introduced in [38], based on the study of the geometry of the set of moments. This relation was constructed from a projection of a moment vector toward the boundary of the set of moments and corresponds to approximating the underlying kinetic distribution as a sum of a chosen equilibrium distribution plus a sum of purely anisotropic Dirac distributions.The present work generalizes this construction for kinetic equations involving unbounded velocities, i.e. to the Hamburger problem, and provides a deeper analysis of the resulting moment system. Especially, we provide representation results for moment vectors along the boundary of the moment set that implies the well-definition of the model. And the resulting moment model is shown to be weakly hyperbolic with peculiar properties of hyperbolicity and entropy of two subsystems, corresponding respectively to the equilibrium and to the purely anisotropic parts of the underlying kinetic distribution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
A closure relation for moments equations in kinetic theory was recently introduced in [38], based on the study of the geometry of the set of moments. This relation was constructed from a projection of a moment vector toward the boundary of the set of moments and corresponds to approximating the underlying kinetic distribution as a sum of a chosen equilibrium distribution plus a sum of purely anisotropic Dirac distributions.The present work generalizes this construction for kinetic equations involving unbounded velocities, i.e. to the Hamburger problem, and provides a deeper analysis of the resulting moment system. Especially, we provide representation results for moment vectors along the boundary of the moment set that implies the well-definition of the model. And the resulting moment model is shown to be weakly hyperbolic with peculiar properties of hyperbolicity and entropy of two subsystems, corresponding respectively to the equilibrium and to the purely anisotropic parts of the underlying kinetic distribution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.