Heilbronn triangle‐type problems in the unit square [0,1]2

Pub Date : 2022-07-25 DOI:10.1002/rsa.21109
F. Benevides, C. Hoppen, H. Lefmann, Knut Odermann
{"title":"Heilbronn triangle‐type problems in the unit square [0,1]2","authors":"F. Benevides, C. Hoppen, H. Lefmann, Knut Odermann","doi":"10.1002/rsa.21109","DOIUrl":null,"url":null,"abstract":"The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of n$$ n $$ points in the unit square [0,1]2$$ {\\left[0,1\\right]}^2 $$ that maximizes the smallest area of a triangle formed by three of those points. This problem has natural generalizations. For an integer k≥3$$ k\\ge 3 $$ and a set 𝒫 of n$$ n $$ points in [0,1]2$$ {\\left[0,1\\right]}^2 $$ , let Ak(𝒫) be the minimum area of the convex hull of k$$ k $$ points in 𝒫 . Here, instead of considering the supremum of Ak(𝒫) over all such choices of 𝒫 , we consider its average value, Δ˜k(n)$$ {\\tilde{\\Delta}}_k(n) $$ , when the n$$ n $$ points in 𝒫 are chosen independently and uniformly at random in [0,1]2$$ {\\left[0,1\\right]}^2 $$ . We prove that Δ˜k(n)=Θn−kk−2$$ {\\tilde{\\Delta}}_k(n)=\\Theta \\left({n}^{\\frac{-k}{k-2}}\\right) $$ , for every fixed k≥3$$ k\\ge 3 $$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of n$$ n $$ points in the unit square [0,1]2$$ {\left[0,1\right]}^2 $$ that maximizes the smallest area of a triangle formed by three of those points. This problem has natural generalizations. For an integer k≥3$$ k\ge 3 $$ and a set 𝒫 of n$$ n $$ points in [0,1]2$$ {\left[0,1\right]}^2 $$ , let Ak(𝒫) be the minimum area of the convex hull of k$$ k $$ points in 𝒫 . Here, instead of considering the supremum of Ak(𝒫) over all such choices of 𝒫 , we consider its average value, Δ˜k(n)$$ {\tilde{\Delta}}_k(n) $$ , when the n$$ n $$ points in 𝒫 are chosen independently and uniformly at random in [0,1]2$$ {\left[0,1\right]}^2 $$ . We prove that Δ˜k(n)=Θn−kk−2$$ {\tilde{\Delta}}_k(n)=\Theta \left({n}^{\frac{-k}{k-2}}\right) $$ , for every fixed k≥3$$ k\ge 3 $$ .
分享
查看原文
单位平方中的Heilbronn三角形型问题[0,1
Heilbronn三角形问题是一个经典的几何问题,它要求在单位正方形[0,1]2 $$ {\left[0,1\right]}^2 $$中放置n个$$ n $$点,以使由三个点组成的三角形的最小面积最大化。这个问题具有自然的普遍性。对于整数k≥3 $$ k\ge 3 $$,在[0,1]2 $$ {\left[0,1\right]}^2 $$中有n个$$ n $$点的集合,设Ak(纸牌)为集合中k个$$ k $$点的凸包面积的最小值。在这里,我们不考虑Ak(纸牌)在所有这样的选择上的最大值,而是考虑它的平均值Δ ~ k(n) $$ {\tilde{\Delta}}_k(n) $$,当n个$$ n $$点在[0,1]2 $$ {\left[0,1\right]}^2 $$中被独立且均匀随机地选择时。我们证明了Δ ~ k(n)=Θn−kk−2 $$ {\tilde{\Delta}}_k(n)=\Theta \left({n}^{\frac{-k}{k-2}}\right) $$,对于每一个固定k≥3 $$ k\ge 3 $$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信