F. Benevides, C. Hoppen, H. Lefmann, Knut Odermann
{"title":"Heilbronn triangle‐type problems in the unit square [0,1]2","authors":"F. Benevides, C. Hoppen, H. Lefmann, Knut Odermann","doi":"10.1002/rsa.21109","DOIUrl":null,"url":null,"abstract":"The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of n$$ n $$ points in the unit square [0,1]2$$ {\\left[0,1\\right]}^2 $$ that maximizes the smallest area of a triangle formed by three of those points. This problem has natural generalizations. For an integer k≥3$$ k\\ge 3 $$ and a set 𝒫 of n$$ n $$ points in [0,1]2$$ {\\left[0,1\\right]}^2 $$ , let Ak(𝒫) be the minimum area of the convex hull of k$$ k $$ points in 𝒫 . Here, instead of considering the supremum of Ak(𝒫) over all such choices of 𝒫 , we consider its average value, Δ˜k(n)$$ {\\tilde{\\Delta}}_k(n) $$ , when the n$$ n $$ points in 𝒫 are chosen independently and uniformly at random in [0,1]2$$ {\\left[0,1\\right]}^2 $$ . We prove that Δ˜k(n)=Θn−kk−2$$ {\\tilde{\\Delta}}_k(n)=\\Theta \\left({n}^{\\frac{-k}{k-2}}\\right) $$ , for every fixed k≥3$$ k\\ge 3 $$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of n$$ n $$ points in the unit square [0,1]2$$ {\left[0,1\right]}^2 $$ that maximizes the smallest area of a triangle formed by three of those points. This problem has natural generalizations. For an integer k≥3$$ k\ge 3 $$ and a set 𝒫 of n$$ n $$ points in [0,1]2$$ {\left[0,1\right]}^2 $$ , let Ak(𝒫) be the minimum area of the convex hull of k$$ k $$ points in 𝒫 . Here, instead of considering the supremum of Ak(𝒫) over all such choices of 𝒫 , we consider its average value, Δ˜k(n)$$ {\tilde{\Delta}}_k(n) $$ , when the n$$ n $$ points in 𝒫 are chosen independently and uniformly at random in [0,1]2$$ {\left[0,1\right]}^2 $$ . We prove that Δ˜k(n)=Θn−kk−2$$ {\tilde{\Delta}}_k(n)=\Theta \left({n}^{\frac{-k}{k-2}}\right) $$ , for every fixed k≥3$$ k\ge 3 $$ .