L3-Net: Towards Learning Based LiDAR Localization for Autonomous Driving

Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, Shiyu Song
{"title":"L3-Net: Towards Learning Based LiDAR Localization for Autonomous Driving","authors":"Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, Shiyu Song","doi":"10.1109/CVPR.2019.00655","DOIUrl":null,"url":null,"abstract":"We present L3-Net - a novel learning-based LiDAR localization system that achieves centimeter-level localization accuracy, comparable to prior state-of-the-art systems with hand-crafted pipelines. Rather than relying on these hand-crafted modules, we innovatively implement the use of various deep neural network structures to establish a learning-based approach. L3-Net learns local descriptors specifically optimized for matching in different real-world driving scenarios. 3D convolutions over a cost volume built in the solution space significantly boosts the localization accuracy. RNNs are demonstrated to be effective in modeling the vehicle's dynamics, yielding better temporal smoothness and accuracy. We comprehensively validate the effectiveness of our approach using freshly collected datasets. Multiple trials of repetitive data collection over the same road and areas make our dataset ideal for testing localization systems. The SunnyvaleBigLoop sequences, with a year's time interval between the collected mapping and testing data, made it quite challenging, but the low localization error of our method in these datasets demonstrates its maturity for real industrial implementation.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"29 1","pages":"6382-6391"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 203

Abstract

We present L3-Net - a novel learning-based LiDAR localization system that achieves centimeter-level localization accuracy, comparable to prior state-of-the-art systems with hand-crafted pipelines. Rather than relying on these hand-crafted modules, we innovatively implement the use of various deep neural network structures to establish a learning-based approach. L3-Net learns local descriptors specifically optimized for matching in different real-world driving scenarios. 3D convolutions over a cost volume built in the solution space significantly boosts the localization accuracy. RNNs are demonstrated to be effective in modeling the vehicle's dynamics, yielding better temporal smoothness and accuracy. We comprehensively validate the effectiveness of our approach using freshly collected datasets. Multiple trials of repetitive data collection over the same road and areas make our dataset ideal for testing localization systems. The SunnyvaleBigLoop sequences, with a year's time interval between the collected mapping and testing data, made it quite challenging, but the low localization error of our method in these datasets demonstrates its maturity for real industrial implementation.
L3-Net:基于学习的自动驾驶激光雷达定位
我们提出了L3-Net——一种新颖的基于学习的激光雷达定位系统,可实现厘米级的定位精度,可与先前手工制作管道的最先进系统相媲美。而不是依赖于这些手工制作的模块,我们创新地实现使用各种深度神经网络结构来建立一个基于学习的方法。L3-Net学习专门针对不同现实驾驶场景进行匹配优化的局部描述符。在解决方案空间中构建的成本体积上的3D卷积显着提高了定位精度。rnn被证明是有效的车辆动力学建模,产生更好的时间平滑性和准确性。我们使用新收集的数据集全面验证了我们方法的有效性。在相同的道路和区域进行重复数据收集的多次试验使我们的数据集成为测试定位系统的理想选择。SunnyvaleBigLoop序列在收集的测绘数据和测试数据之间有一年的时间间隔,这使得它非常具有挑战性,但是我们的方法在这些数据集中的定位误差很低,这表明它对于实际的工业实施是成熟的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信