Siqiang Luo, Zichen Zhu, Xiaokui Xiao, Y. Yang, Chunbo Li, B. Kao
{"title":"Multi-Task Processing in Vertex-Centric Graph Systems: Evaluations and Insights","authors":"Siqiang Luo, Zichen Zhu, Xiaokui Xiao, Y. Yang, Chunbo Li, B. Kao","doi":"10.48786/edbt.2023.20","DOIUrl":null,"url":null,"abstract":"Vertex-centric (VC) graph systems are at the core of large-scale distributed graph processing. For such systems, a common usage pattern is the concurrent processing of multiple tasks ( multi-processing for short), which aims to execute a large number of unit tasks in parallel. In this paper, we point out that multi-processing has not been sufficiently studied or evaluated in previous work; hence, we fill this critical gap with three major contributions. First, we examine the tradeoff between two important measures in VC-systems: the number of communication rounds and message congestion . We show that this tradeoff is crucial to system performance; yet, existing approaches fail to achieve an optimal tradeoff, leading to poor performance. Second, based on exten-sive experimental evaluations on mainstream VC systems (e.g., Giraph, Pregel+, GraphD) and benchmark multi-processing tasks (e.g., Batch Personalized PageRanks, Multiple Source Shortest Paths), we present several important insights on the correlation between system performance and configurations, which is valu-able to practitioners in optimizing system performance. Third, based on the insights drawn from our experimental evaluations, we present a cost-based tuning framework that optimizes the performance of a representative VC-system. This demonstrates the usefulness of the insights.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"4 1","pages":"247-259"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Vertex-centric (VC) graph systems are at the core of large-scale distributed graph processing. For such systems, a common usage pattern is the concurrent processing of multiple tasks ( multi-processing for short), which aims to execute a large number of unit tasks in parallel. In this paper, we point out that multi-processing has not been sufficiently studied or evaluated in previous work; hence, we fill this critical gap with three major contributions. First, we examine the tradeoff between two important measures in VC-systems: the number of communication rounds and message congestion . We show that this tradeoff is crucial to system performance; yet, existing approaches fail to achieve an optimal tradeoff, leading to poor performance. Second, based on exten-sive experimental evaluations on mainstream VC systems (e.g., Giraph, Pregel+, GraphD) and benchmark multi-processing tasks (e.g., Batch Personalized PageRanks, Multiple Source Shortest Paths), we present several important insights on the correlation between system performance and configurations, which is valu-able to practitioners in optimizing system performance. Third, based on the insights drawn from our experimental evaluations, we present a cost-based tuning framework that optimizes the performance of a representative VC-system. This demonstrates the usefulness of the insights.