On Wick calculus and its relationship with stochastic integration on spaces of regular test functions in the Lévy white noise analysis

IF 1 Q1 MATHEMATICS
N. A. Kachanovsky
{"title":"On Wick calculus and its relationship with stochastic integration on spaces of regular test functions in the Lévy white noise analysis","authors":"N. A. Kachanovsky","doi":"10.15330/cmp.14.1.194-212","DOIUrl":null,"url":null,"abstract":"We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.194-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.
l白噪声分析中Wick微积分及其与正则测试函数空间上随机积分的关系
我们处理l白噪声分析中的正则测试函数的空间,这些空间是利用Lytvynov对混沌表示性质的推广构造的。我们的目的是研究全纯函数的Wick乘法和Wick版本的性质,并描述在这些空间上的Wick乘法和积分之间的关系。更确切地说,我们建立了正则测试函数的Wick积是正则测试函数;在某些条件下,具有正则测试函数空间参数的全纯函数的Wick版本是正则测试函数;证明当采用Wick乘法时,可以从扩展的随机积分的符号中取一个与时间无关的乘子,这是相对于lsamvy过程的;对Pettis积分(弱积分)建立类似的结果;由原始被积函数的Wick积通过l白噪声得到扩展随机积分的形式Pettis积分表示。作为应用我们的结果的一个例子,我们考虑了一个带Wick乘法的积分随机方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信