{"title":"On Wick calculus and its relationship with stochastic integration on spaces of regular test functions in the Lévy white noise analysis","authors":"N. A. Kachanovsky","doi":"10.15330/cmp.14.1.194-212","DOIUrl":null,"url":null,"abstract":"We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.194-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.