Stability analysis of mechanical systems with distributed delay via decomposition

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Aleksandrov, A. Tikhonov
{"title":"Stability analysis of mechanical systems with distributed delay via decomposition","authors":"A. Aleksandrov, A. Tikhonov","doi":"10.21638/11701/SPBU10.2021.102","DOIUrl":null,"url":null,"abstract":"The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"17 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/SPBU10.2021.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.
具有分布时滞的机械系统的分解稳定性分析
本文分析了在速度力矢量上具有大参数和位置力分布时滞的线性机械系统。利用该分解方法,得到了将二阶微分方程原系统的稳定性分析问题简化为研究两个辅助一阶子系统的稳定性的条件。值得注意的是,其中一个辅助子系统不包含延迟,而对于包含分布式延迟的第二个子系统,稳定性条件是根据线性矩阵不等式系统的可行性来表示的。为了证实这种分解,使用了李亚普诺夫直接法。提出了Lyapunov-Krasovskii泛函的特殊构造。该方法适用于刚体的单轴稳定问题。给出了数值模拟的结果,证实了解析得到的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信