NL2Viz: natural language to visualization via constrained syntax-guided synthesis

Zhengkai Wu, Vu Le, A. Tiwari, Sumit Gulwani, Arjun Radhakrishna, Ivan Radicek, Gustavo Soares, Xinyu Wang, Zhenwen Li, Tao Xie
{"title":"NL2Viz: natural language to visualization via constrained syntax-guided synthesis","authors":"Zhengkai Wu, Vu Le, A. Tiwari, Sumit Gulwani, Arjun Radhakrishna, Ivan Radicek, Gustavo Soares, Xinyu Wang, Zhenwen Li, Tao Xie","doi":"10.1145/3540250.3549140","DOIUrl":null,"url":null,"abstract":"Recent development in NL2CODE (Natural Language to Code) research allows end-users, especially novice programmers to create a concrete implementation of their ideas such as data visualization by providing natural language (NL) instructions. An NL2CODE system often fails to achieve its goal due to three major challenges: the user's words have contextual semantics, the user may not include all details needed for code generation, and the system results are imperfect and require further refinement. To address the aforementioned three challenges for NL to Visualization, we propose a new approach and its supporting tool named NL2VIZ with three salient features: (1) leveraging not only the user's NL input but also the data and program context that the NL query is upon, (2) using hard/soft constraints to reflect different confidence levels in the constraints retrieved from the user input and data/program context, and (3) providing support for result refinement and reuse. We implement NL2VIZ in the Jupyter Notebook environment and evaluate NL2VIZ on a real-world visualization benchmark and a public dataset to show the effectiveness of NL2VIZ. We also conduct a user study involving 6 data scientist professionals to demonstrate the usability of NL2VIZ, the readability of the generated code, and NL2VIZ's effectiveness in helping users generate desired visualizations effectively and efficiently.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3549140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent development in NL2CODE (Natural Language to Code) research allows end-users, especially novice programmers to create a concrete implementation of their ideas such as data visualization by providing natural language (NL) instructions. An NL2CODE system often fails to achieve its goal due to three major challenges: the user's words have contextual semantics, the user may not include all details needed for code generation, and the system results are imperfect and require further refinement. To address the aforementioned three challenges for NL to Visualization, we propose a new approach and its supporting tool named NL2VIZ with three salient features: (1) leveraging not only the user's NL input but also the data and program context that the NL query is upon, (2) using hard/soft constraints to reflect different confidence levels in the constraints retrieved from the user input and data/program context, and (3) providing support for result refinement and reuse. We implement NL2VIZ in the Jupyter Notebook environment and evaluate NL2VIZ on a real-world visualization benchmark and a public dataset to show the effectiveness of NL2VIZ. We also conduct a user study involving 6 data scientist professionals to demonstrate the usability of NL2VIZ, the readability of the generated code, and NL2VIZ's effectiveness in helping users generate desired visualizations effectively and efficiently.
NL2Viz:通过约束语法引导合成的自然语言可视化
NL2CODE(自然语言到代码)研究的最新发展允许最终用户,特别是新手程序员通过提供自然语言(NL)指令来创建他们的想法的具体实现,例如数据可视化。一个NL2CODE系统经常不能达到它的目标,因为三个主要的挑战:用户的话有上下文语义,用户可能不包括代码生成所需的所有细节,系统结果是不完美的,需要进一步的改进。为了解决上述NL可视化的三个挑战,我们提出了一种新的方法及其支持工具NL2VIZ,它具有三个显著特征:(1)不仅利用用户的NL输入,还利用NL查询所处的数据和程序上下文;(2)使用硬/软约束来反映从用户输入和数据/程序上下文检索到的约束的不同置信水平;(3)为结果精化和重用提供支持。我们在Jupyter Notebook环境中实现了NL2VIZ,并在现实世界的可视化基准和公共数据集上对NL2VIZ进行了评估,以显示NL2VIZ的有效性。我们还进行了一项涉及6名数据科学家专业人员的用户研究,以演示NL2VIZ的可用性、生成代码的可读性以及NL2VIZ在帮助用户有效和高效地生成所需可视化方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
676
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信