Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Agi Kurucz, V. Ryzhikov, Yury Savateev, M. Zakharyaschev
{"title":"Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic","authors":"Agi Kurucz, V. Ryzhikov, Yury Savateev, M. Zakharyaschev","doi":"10.1613/jair.1.14061","DOIUrl":null,"url":null,"abstract":"Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"117 1","pages":"645-703"},"PeriodicalIF":4.5000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14061","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete.
线性时序逻辑中正则语言和本体中介查询的fo -可重写性决定
我们关心的问题是确定回答用线性时间逻辑LTL over (Z,<)表述的本体中介查询(OMQ)的数据复杂性,以及确定它是否可重写为FO(<)查询(可能使用一些额外的谓词)。首先,我们观察到,根据正则语言的电路复杂性和FO-可定义性,AC0、ACC0和NC1中的OMQ应答分别符合FO(<,≡)-使用一元谓词x≡0 (mod n)的可重写性、FO(<, mod)-可重写性和FO(RPR)-使用关系原语递归的可重写性。我们证明,类似于已知的识别正则语言的FO(<)-可定义性的PS(<,≡)-的完备性,决定FO(<,≡)-和FO(<,MOD)-可定义性也是PS(<,≡)的完备性(除非ACC0 = NC1)。然后,我们使用该结果表明,决定LTL omq的FO(<,≡)-,FO(<,≡)-和FO(<,MOD)-可重写性是Ex, S, S, S -完备的,并且这些问题对于具有线性Horn本体和原子查询的omq来说是PS, S, S, S -完备的,并且在FO(<)-和FO(<,≡)-可重写性的情况下也是一个正查询。进一步,我们考虑了二元子句本体的OMQ的FO(<)-可重写性,并对OMQ类进行了识别,判定其为PS -、Π2p-和cp -完备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信