A Method for Avoiding Breakdown in Product-Type Iterative Methods and its Behavior for Toeplitz Linear Systems

Hiroto Tadano, Tetsuya Sakurai
{"title":"A Method for Avoiding Breakdown in Product-Type Iterative Methods and its Behavior for Toeplitz Linear Systems","authors":"Hiroto Tadano,&nbsp;Tetsuya Sakurai","doi":"10.1002/anac.200410040","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose product-type iterative methods with restart for avoiding breakdown. The residual vectors of product-type iterative methods are denoted as the product of a polynomial and the residual vector of BiCG. In particular, the residual polynomial of BiCG is called the Lanczos polynomial. In product-type iterative methods, breakdown may occur in the recurrence relations of the Lanczos polynomial due to division by zero. We investigated the behavior of the proposed method through experiments using Toeplitz linear systems with various parameters. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 2","pages":"254-261"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose product-type iterative methods with restart for avoiding breakdown. The residual vectors of product-type iterative methods are denoted as the product of a polynomial and the residual vector of BiCG. In particular, the residual polynomial of BiCG is called the Lanczos polynomial. In product-type iterative methods, breakdown may occur in the recurrence relations of the Lanczos polynomial due to division by zero. We investigated the behavior of the proposed method through experiments using Toeplitz linear systems with various parameters. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Toeplitz线性系统产品型迭代法中避免故障的方法及其行为
为了避免故障,本文提出了带重启的产品型迭代方法。积型迭代法的残差向量表示为多项式与BiCG残差向量的乘积。其中,BiCG的残差多项式称为Lanczos多项式。在积型迭代方法中,Lanczos多项式的递归关系可能因除零而发生击穿。我们通过不同参数的Toeplitz线性系统实验研究了所提出方法的行为。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信