Classification of lung nodules with feature extraction using CT scan images

M. Jayalaxmi, J. Dhanaselvam, R. Swathi, M. Babu
{"title":"Classification of lung nodules with feature extraction using CT scan images","authors":"M. Jayalaxmi, J. Dhanaselvam, R. Swathi, M. Babu","doi":"10.1109/ICPCSI.2017.8392097","DOIUrl":null,"url":null,"abstract":"OBJECTIVE: The main aim is to differentiate the various types of lung nodules using the SVM classifier. By identifying the lung nodules, the cause of lung cancer can be avoided. METHODOLOGY: The major contributions in this system are (i) Patch based division, to partition the original images (ii) Feature extraction stage, to extract feature information (iii) Classification stage, to classify the four types of lung nodules with the help of SVM classifier with pLSA. FINDINGS: This system has an improvement with the Local Tetra Pattern (LTrP) to provide more feature information. This pattern extracts feature information from more than two direction to give accurate results. IMPROVEMENT: This system can be improved with different classifier to achieve accurate classification.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"117 1","pages":"2146-2151"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCSI.2017.8392097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

OBJECTIVE: The main aim is to differentiate the various types of lung nodules using the SVM classifier. By identifying the lung nodules, the cause of lung cancer can be avoided. METHODOLOGY: The major contributions in this system are (i) Patch based division, to partition the original images (ii) Feature extraction stage, to extract feature information (iii) Classification stage, to classify the four types of lung nodules with the help of SVM classifier with pLSA. FINDINGS: This system has an improvement with the Local Tetra Pattern (LTrP) to provide more feature information. This pattern extracts feature information from more than two direction to give accurate results. IMPROVEMENT: This system can be improved with different classifier to achieve accurate classification.
基于CT扫描图像特征提取的肺结节分类
目的:主要目的是利用SVM分类器区分不同类型的肺结节。通过鉴别肺结节,可以避免肺癌的发生。方法:本系统的主要贡献有:(i)基于Patch的分割,对原始图像进行分割;(ii)特征提取阶段,提取特征信息;(iii)分类阶段,利用SVM分类器结合pLSA对四种类型的肺结节进行分类。结果:该系统改进了局部利乐模式(ltp),提供了更多的特征信息。该模式从两个以上的方向提取特征信息,从而得到准确的结果。改进:本系统可采用不同的分类器进行改进,实现准确的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信