Bayesian modeling of clustered competing risks survival times with spatial random effects

Q3 Nursing
S. Momenyan, A. Kavousi, T. Baghfalaki, J. Poorolajal
{"title":"Bayesian modeling of clustered competing risks survival times with spatial random effects","authors":"S. Momenyan, A. Kavousi, T. Baghfalaki, J. Poorolajal","doi":"10.2427/13301","DOIUrl":null,"url":null,"abstract":"n some studies, survival data are arranged spatially such as geographical regions. Incorporating spatial associationin these data not only can increase the accuracy and efficiency of the parameter estimation, but it also investigatesthe spatial patterns of survivorship. In this paper, we considered a Bayesian hierarchical survival model in thesetting of competing risks for the spatially clustered HIV/AIDS data. In this model, a Weibull Parametric distributionwith the spatial random effects in the form of county-failure type-level was used. A multivariate intrinsic conditionalautoregressive (MCAR) distribution was employed to model the areal spatial random effects. Comparison amongcompeting models was performed by the deviance information criterion and log pseudo-marginal likelihood. Weillustrated the gains of our model through the simulation studies and application to the HIV/AIDS data.","PeriodicalId":45811,"journal":{"name":"Epidemiology Biostatistics and Public Health","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology Biostatistics and Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2427/13301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 2

Abstract

n some studies, survival data are arranged spatially such as geographical regions. Incorporating spatial associationin these data not only can increase the accuracy and efficiency of the parameter estimation, but it also investigatesthe spatial patterns of survivorship. In this paper, we considered a Bayesian hierarchical survival model in thesetting of competing risks for the spatially clustered HIV/AIDS data. In this model, a Weibull Parametric distributionwith the spatial random effects in the form of county-failure type-level was used. A multivariate intrinsic conditionalautoregressive (MCAR) distribution was employed to model the areal spatial random effects. Comparison amongcompeting models was performed by the deviance information criterion and log pseudo-marginal likelihood. Weillustrated the gains of our model through the simulation studies and application to the HIV/AIDS data.
空间随机效应下聚类竞争风险生存时间的贝叶斯建模
在一些研究中,生存数据是按地理区域等空间排列的。在这些数据中加入空间关联不仅可以提高参数估计的准确性和效率,而且还可以研究生存的空间模式。在本文中,我们考虑了贝叶斯分层生存模型在这些竞争风险的空间聚类艾滋病毒/艾滋病数据。在该模型中,采用威布尔参数分布,其空间随机效应表现为县-失效类型-水平的形式。采用多变量内禀条件自回归(MCAR)分布对区域空间随机效应进行建模。采用偏差信息准则和对数伪边际似然对竞争模型进行比较。通过对HIV/AIDS数据的仿真研究和应用,说明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemiology Biostatistics and Public Health
Epidemiology Biostatistics and Public Health PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
自引率
0.00%
发文量
0
期刊介绍: Epidemiology, Biostatistics, and Public Health (EBPH) is a multidisciplinary journal that has two broad aims: -To support the international public health community with publications on health service research, health care management, health policy, and health economics. -To strengthen the evidences on effective preventive interventions. -To advance public health methods, including biostatistics and epidemiology. EBPH welcomes submissions on all public health issues (including topics like eHealth, big data, personalized prevention, epidemiology and risk factors of chronic and infectious diseases); on basic and applied research in epidemiology; and in biostatistics methodology. Primary studies, systematic reviews, and meta-analyses are all welcome, as are research protocols for observational and experimental studies. EBPH aims to be a cross-discipline, international forum for scientific integration and evidence-based policymaking, combining the methodological aspects of epidemiology, biostatistics, and public health research with their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信