{"title":"Experimental and Numerical Behavior of Basalt Fiber Reinforced Short Concrete Columns Under Axial Loading","authors":"Dhiyaa H. Mohammed, Adil M. Jabbar, Qais A. Hasan","doi":"10.3311/ppci.22070","DOIUrl":null,"url":null,"abstract":"This paper presents experimental and numerical investigations to reveal effecting of incorporating basalt fibers into a concrete matrix on the structural behavior and loading capacity of axially loaded short columns. Six volume fractions of chopped basalt fibers are added to the same concrete mixture to prepare six identically reinforced columns. The results illustrate that the bonding forces between microfilaments and matrix increase to provide good internal confinement for concrete ingredients, which enhances compressive strength and column loading capacity. The 0.3 % basalt fiber awarded the best compressive strength, while 0.15 % and 0.3 % awarded the best load capacity to the column. The Addition of basalt fibers delays cracking to increase the cracking load by about 50 % more than no fiber column, which indicates that it needs more energy to overcome the bonding strength between filaments and matrix. At the ultimate state, the loading capacity increases by 15 % and 17 % for 0.15 % and 0.3 % of basalt fibers and by 10 % and 12 % for 0.45% and 0.6% of basalt fiber. The 0.75 % decreased compressive strength by about 6 % but raised the column's ultimate load by 18 %. Therefore, basalt fiber benefits the cracking load more than the maximum load. The finite element showed approaching the peak load in numerical and experimental results. The longitudinal rebars and ties do not yield at the ultimate state. Increasing the reinforcement ratio raises loading capacity while lowering the yield stress of bars minimizes the maximum load.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents experimental and numerical investigations to reveal effecting of incorporating basalt fibers into a concrete matrix on the structural behavior and loading capacity of axially loaded short columns. Six volume fractions of chopped basalt fibers are added to the same concrete mixture to prepare six identically reinforced columns. The results illustrate that the bonding forces between microfilaments and matrix increase to provide good internal confinement for concrete ingredients, which enhances compressive strength and column loading capacity. The 0.3 % basalt fiber awarded the best compressive strength, while 0.15 % and 0.3 % awarded the best load capacity to the column. The Addition of basalt fibers delays cracking to increase the cracking load by about 50 % more than no fiber column, which indicates that it needs more energy to overcome the bonding strength between filaments and matrix. At the ultimate state, the loading capacity increases by 15 % and 17 % for 0.15 % and 0.3 % of basalt fibers and by 10 % and 12 % for 0.45% and 0.6% of basalt fiber. The 0.75 % decreased compressive strength by about 6 % but raised the column's ultimate load by 18 %. Therefore, basalt fiber benefits the cracking load more than the maximum load. The finite element showed approaching the peak load in numerical and experimental results. The longitudinal rebars and ties do not yield at the ultimate state. Increasing the reinforcement ratio raises loading capacity while lowering the yield stress of bars minimizes the maximum load.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.