A. Bayraktar, Arif Erdiş, Altok Kurşun, Yavuzhan Tas, M. Akköse
{"title":"Impact-induced vibration effects on the real dynamic behavior of cable-stayed bridges","authors":"A. Bayraktar, Arif Erdiş, Altok Kurşun, Yavuzhan Tas, M. Akköse","doi":"10.1680/jstbu.21.00186","DOIUrl":null,"url":null,"abstract":"Cable-stayed bridges are flexible and complex structures. Impact-induced vibrations may play an important role on the behaviors of the structural elements. Many efforts have been devoted to clarifying the experimental static and dynamic responses of cable-stayed bridges. However, experimental dynamic responses of structural elements of cable-stayed bridges under impact-induced vibrations have not been addressed widely in the literature. The paper focuses on the real experimental dynamic behaviors of cables, deck, and pylon in cable-stayed bridges under impact-induced vibration effects due to fully loaded trucks passing over a bump positioned on the deck center. The tests have been implemented on the new Kömürhan cable-stayed bridge under the passage of two-40 ton trucks. The thickness of the timber bumps and speed of the trucks are selected as 50mm and 30km/h, respectively. The dynamic responses of the structural elements have been recorded using load cells, 2D and 3D accelerometers. Forces, accelerations and frequencies of the main and back span cables, and acceleration responses of deck and pylon recorded with and without impact effects are evaluated and compared with each other. Significant impact-induced amplification ratios on the responses of the main and back span cables, deck and pylon are observed on the selected bridge.","PeriodicalId":54570,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Structures and Buildings","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Structures and Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jstbu.21.00186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cable-stayed bridges are flexible and complex structures. Impact-induced vibrations may play an important role on the behaviors of the structural elements. Many efforts have been devoted to clarifying the experimental static and dynamic responses of cable-stayed bridges. However, experimental dynamic responses of structural elements of cable-stayed bridges under impact-induced vibrations have not been addressed widely in the literature. The paper focuses on the real experimental dynamic behaviors of cables, deck, and pylon in cable-stayed bridges under impact-induced vibration effects due to fully loaded trucks passing over a bump positioned on the deck center. The tests have been implemented on the new Kömürhan cable-stayed bridge under the passage of two-40 ton trucks. The thickness of the timber bumps and speed of the trucks are selected as 50mm and 30km/h, respectively. The dynamic responses of the structural elements have been recorded using load cells, 2D and 3D accelerometers. Forces, accelerations and frequencies of the main and back span cables, and acceleration responses of deck and pylon recorded with and without impact effects are evaluated and compared with each other. Significant impact-induced amplification ratios on the responses of the main and back span cables, deck and pylon are observed on the selected bridge.
期刊介绍:
Structures and Buildings publishes peer-reviewed papers on the design and construction of civil engineering structures and the applied research associated with such activities. Topics include the design, strength, durability and behaviour of structural components and systems.
Topics covered: energy conservation, people movement within and around buildings, strength and durability of steel and concrete structural components, and the behaviour of building and bridge components and systems