Saurav Mallik, A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay
{"title":"Integrated analysis of gene expression and genome-wide DNA methylation for tumor prediction: An association rule mining-based approach","authors":"Saurav Mallik, A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay","doi":"10.1109/CIBCB.2013.6595397","DOIUrl":null,"url":null,"abstract":"Statistical analysis and association rule mining are two most efficient techniques, where the first one is used to identify differentially expressed/methylated genes across different types of samples or experimental conditions and the second one is used to determine expression/methylation relationships among them. In this article, we have performed an integrated analysis of statistical methods and association rule mining on mRNA expression and DNA methylation datasets for the prediction of Uterine Leiomyoma. Moreover, we have proposed a novel rule-base classifier. Depending on 16 different rule-interestingness measures, we have applied a Genetic Algorithm based rank aggregation technique on the association rules which are generated from the training data by Apriori association rule mining algorithm. After determining the ranks of the rules, we have conducted a majority voting technique on each test point to determine its class-label (i.e. tumor or normal class-label) through weighted-sum method. We have run this classifier on the combined dataset using k-fold cross-validation and also performed a comparative performance analysis with other popular rule-base classifiers. Finally, we have predicted the status of some important genes (through frequency analysis in association rules for tumor and normal class-labels individually) that have a major role for tumor formation in Uterine Leiomyoma.","PeriodicalId":89148,"journal":{"name":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"3 4 1","pages":"120-127"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2013.6595397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Statistical analysis and association rule mining are two most efficient techniques, where the first one is used to identify differentially expressed/methylated genes across different types of samples or experimental conditions and the second one is used to determine expression/methylation relationships among them. In this article, we have performed an integrated analysis of statistical methods and association rule mining on mRNA expression and DNA methylation datasets for the prediction of Uterine Leiomyoma. Moreover, we have proposed a novel rule-base classifier. Depending on 16 different rule-interestingness measures, we have applied a Genetic Algorithm based rank aggregation technique on the association rules which are generated from the training data by Apriori association rule mining algorithm. After determining the ranks of the rules, we have conducted a majority voting technique on each test point to determine its class-label (i.e. tumor or normal class-label) through weighted-sum method. We have run this classifier on the combined dataset using k-fold cross-validation and also performed a comparative performance analysis with other popular rule-base classifiers. Finally, we have predicted the status of some important genes (through frequency analysis in association rules for tumor and normal class-labels individually) that have a major role for tumor formation in Uterine Leiomyoma.