High Probability Mutation and Error Thresholds in Genetic Algorithms

Nicolae-Eugen Croitoru
{"title":"High Probability Mutation and Error Thresholds in Genetic Algorithms","authors":"Nicolae-Eugen Croitoru","doi":"10.1109/SYNASC.2015.51","DOIUrl":null,"url":null,"abstract":"Error Threshold is a concept from molecular biology that has been introduced [G. Ochoa (2006) Error Thresholds in Genetic Algorithms. Evolutionary Computation Journal, 14:2, pp 157-182, MIT Press] in Genetic Algorithms and has been linked to the concept of Optimal Mutation Rate. In this paper, the author expands previous works with a study of Error Thresholds near 1 (i.e. mutation probabilities of approx. 0.95), in the context of binary encoded chromosomes. Comparative empirical tests are performed, and the author draws conclusions in the context of population consensus sequences, population size, mutation rates and error thresholds.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"271-276"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Error Threshold is a concept from molecular biology that has been introduced [G. Ochoa (2006) Error Thresholds in Genetic Algorithms. Evolutionary Computation Journal, 14:2, pp 157-182, MIT Press] in Genetic Algorithms and has been linked to the concept of Optimal Mutation Rate. In this paper, the author expands previous works with a study of Error Thresholds near 1 (i.e. mutation probabilities of approx. 0.95), in the context of binary encoded chromosomes. Comparative empirical tests are performed, and the author draws conclusions in the context of population consensus sequences, population size, mutation rates and error thresholds.
遗传算法中的高概率突变和错误阈值
错误阈值(Error Threshold)是分子生物学的一个概念。遗传算法中的误差阈值。《进化计算杂志》,14:2,第157-182页,麻省理工学院出版社)的遗传算法,并已与最优突变率的概念联系在一起。在本文中,作者扩展了先前的工作,研究了1附近的误差阈值(即近似的突变概率)。0.95),在二进制编码染色体的背景下。比较实证检验进行,并在人口共识序列,人口规模,突变率和误差阈值的背景下得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信