Trading-off on-die observability for cache minimum supply voltage reduction in system-on-chip (SoC) processors

K. Bowman, A. Park, V. Narayanan, Francois Atallah, A. Artieri, S. Yoon, Kendrick Yuen, David Hansquine
{"title":"Trading-off on-die observability for cache minimum supply voltage reduction in system-on-chip (SoC) processors","authors":"K. Bowman, A. Park, V. Narayanan, Francois Atallah, A. Artieri, S. Yoon, Kendrick Yuen, David Hansquine","doi":"10.1109/TEST.2014.7035322","DOIUrl":null,"url":null,"abstract":"Circuit techniques for reducing the minimum supply voltage (V MIN ) of last-level and intermediate static random-access memory (SRAM) caches enhance processor energy efficiency. For the first time at a 16nm technology node, projections of a high-density 6-transistor SRAM bit cell indicate that the VMIN of a 4Mb or larger cache exceeds the maximum supply voltage (V MAX ) for reliability. Thus, circuit techniques for cache VMIN reduction are transitioning from an energy-efficient solution to a requirement for cache functionality. Traditionally, error-correcting codes (ECC) such as single-error correction, double-error detection (SECDED) aim to protect the cache operation from radiation-induced soft errors. Moreover, during the qualification of a system-on-chip (SoC) processor, test engineers monitor the rate of correctable cache errors from SECDED for observing the on-die interactions between integrated components (e.g., CPU, GPU, DSP, etc.). This presentation highlights the opportunity to exploit ECC for reducing the cache V MIN while simultaneously providing coverage for radiation-induced soft errors. Silicon test-chip measurements from a 7Mb data cache in a 20nm technology demonstrate a V MIN reduction of 19% from SECDED. In addition, silicon measurements provide a salient insight in that only 0.12% of the cache words contain an error when operating at the cache V MIN with SECDED. Therefore, SECDED improves V MIN by 19% while maintaining 99.88% coverage for radiation-induced soft errors. In applying SECDED for a lower cache VMIN, the rate of correctable errors exponentially increases, thus eliminating a useful metric for on-die observability. The presentation concludes by offering alternative solutions for on-die observability.","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"3 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2014.7035322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Circuit techniques for reducing the minimum supply voltage (V MIN ) of last-level and intermediate static random-access memory (SRAM) caches enhance processor energy efficiency. For the first time at a 16nm technology node, projections of a high-density 6-transistor SRAM bit cell indicate that the VMIN of a 4Mb or larger cache exceeds the maximum supply voltage (V MAX ) for reliability. Thus, circuit techniques for cache VMIN reduction are transitioning from an energy-efficient solution to a requirement for cache functionality. Traditionally, error-correcting codes (ECC) such as single-error correction, double-error detection (SECDED) aim to protect the cache operation from radiation-induced soft errors. Moreover, during the qualification of a system-on-chip (SoC) processor, test engineers monitor the rate of correctable cache errors from SECDED for observing the on-die interactions between integrated components (e.g., CPU, GPU, DSP, etc.). This presentation highlights the opportunity to exploit ECC for reducing the cache V MIN while simultaneously providing coverage for radiation-induced soft errors. Silicon test-chip measurements from a 7Mb data cache in a 20nm technology demonstrate a V MIN reduction of 19% from SECDED. In addition, silicon measurements provide a salient insight in that only 0.12% of the cache words contain an error when operating at the cache V MIN with SECDED. Therefore, SECDED improves V MIN by 19% while maintaining 99.88% coverage for radiation-induced soft errors. In applying SECDED for a lower cache VMIN, the rate of correctable errors exponentially increases, thus eliminating a useful metric for on-die observability. The presentation concludes by offering alternative solutions for on-die observability.
权衡片上系统(SoC)处理器中缓存最小电源电压降低的片上可观察性
降低最后一级和中间静态随机存取存储器(SRAM)缓存的最小供电电压(V MIN)的电路技术提高了处理器的能量效率。首次在16nm技术节点上,高密度6晶体管SRAM位单元的投影表明,4Mb或更大缓存的VMIN超过了可靠性的最大供电电压(vmax)。因此,降低缓存VMIN的电路技术正从一种节能解决方案转变为对缓存功能的要求。传统的纠错码(ECC),如单错误校正,双错误检测(SECDED),旨在保护缓存操作免受辐射引起的软错误。此外,在片上系统(SoC)处理器的鉴定过程中,测试工程师监控来自SECDED的可纠正缓存错误率,以观察集成组件(例如,CPU, GPU, DSP等)之间的片上交互。本报告强调了利用ECC来降低缓存V MIN的机会,同时提供辐射引起的软错误的覆盖。采用20nm技术的7Mb数据缓存的硅测试芯片测量表明,与SECDED相比,vmin降低了19%。此外,硅测量提供了一个显著的见解,即当使用SECDED在缓存V MIN下操作时,只有0.12%的缓存字包含错误。因此,SECDED将V MIN提高了19%,同时对辐射引起的软误差保持了99.88%的覆盖率。在将SECDED应用于较低的缓存VMIN时,可纠正错误率呈指数增长,从而消除了芯片上可观察性的有用度量。该报告最后提供了可观察性的替代解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信