A Markov chain based pruning method for predictive range queries

Xiaofeng Xu, Li Xiong, V. Sunderam, Yonghui Xiao
{"title":"A Markov chain based pruning method for predictive range queries","authors":"Xiaofeng Xu, Li Xiong, V. Sunderam, Yonghui Xiao","doi":"10.1145/2996913.2996922","DOIUrl":null,"url":null,"abstract":"Predictive range queries retrieve objects in a certain spatial region at a (future) prediction time. Processing predictive range queries on large moving object databases is expensive. Thus effective pruning is important, especially for long-term predictive queries since accurately predicting long-term future behaviors of moving objects is challenging and expensive. In this work, we propose a pruning method that effectively reduces the candidate set for predictive range queries based on (high-order) Markov chain models learned from historical trajectories. The key to our method is to devise compressed representations for sparse multi-dimensional matrices, and leverage efficient algorithms for matrix computations. Experimental evaluations show that our approach significantly outperforms other pruning methods in terms of efficiency and precision.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Predictive range queries retrieve objects in a certain spatial region at a (future) prediction time. Processing predictive range queries on large moving object databases is expensive. Thus effective pruning is important, especially for long-term predictive queries since accurately predicting long-term future behaviors of moving objects is challenging and expensive. In this work, we propose a pruning method that effectively reduces the candidate set for predictive range queries based on (high-order) Markov chain models learned from historical trajectories. The key to our method is to devise compressed representations for sparse multi-dimensional matrices, and leverage efficient algorithms for matrix computations. Experimental evaluations show that our approach significantly outperforms other pruning methods in terms of efficiency and precision.
基于马尔可夫链的预测范围查询剪枝方法
预测范围查询在(未来)预测时间检索特定空间区域中的对象。在大型移动对象数据库上处理预测范围查询是非常昂贵的。因此,有效的修剪非常重要,特别是对于长期预测查询,因为准确预测移动对象的长期未来行为是具有挑战性和昂贵的。在这项工作中,我们提出了一种修剪方法,该方法基于从历史轨迹中学习的(高阶)马尔可夫链模型,有效地减少了预测范围查询的候选集。我们的方法的关键是为稀疏的多维矩阵设计压缩表示,并利用有效的算法进行矩阵计算。实验评估表明,我们的方法在效率和精度方面明显优于其他修剪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信