A Comparative Study on the Data-driven Based Prognostic Approaches for RUL of Rolling Bearings

Xiaojie Zhai, Xiukun Wei, Jihong Yang
{"title":"A Comparative Study on the Data-driven Based Prognostic Approaches for RUL of Rolling Bearings","authors":"Xiaojie Zhai, Xiukun Wei, Jihong Yang","doi":"10.1109/SSCI44817.2019.9002764","DOIUrl":null,"url":null,"abstract":"With the condition monitoring equipment becoming more sophisticated, data-driven based prognostic approaches for remaining useful life (RUL) are emerging. This paper introduces three classical prognostic approaches and verifies the effectiveness through the whole-life cycle experimental data of degenerated rolling bearings. The result shows that the prediction of the methods based on probability statistics will be greatly affected, if the prior parameters are inaccurate. And the degradation model cannot be adapted to individual bearing accurately. The prognostic method based on artificial intelligence and condition monitoring is more accurate in the case of a small number of training samples, and it will output a remaining useful life prediction interval with higher reliability. Therefore, by combining with other models, improving the intelligent algorithm to enhance the accuracy of its RUL prediction is the key to solve the problem about online prognostic.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"51 1","pages":"1751-1755"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the condition monitoring equipment becoming more sophisticated, data-driven based prognostic approaches for remaining useful life (RUL) are emerging. This paper introduces three classical prognostic approaches and verifies the effectiveness through the whole-life cycle experimental data of degenerated rolling bearings. The result shows that the prediction of the methods based on probability statistics will be greatly affected, if the prior parameters are inaccurate. And the degradation model cannot be adapted to individual bearing accurately. The prognostic method based on artificial intelligence and condition monitoring is more accurate in the case of a small number of training samples, and it will output a remaining useful life prediction interval with higher reliability. Therefore, by combining with other models, improving the intelligent algorithm to enhance the accuracy of its RUL prediction is the key to solve the problem about online prognostic.
基于数据驱动的滚动轴承RUL预测方法比较研究
随着状态监测设备变得越来越复杂,基于数据驱动的剩余使用寿命(RUL)预测方法正在出现。介绍了三种经典的预测方法,并通过退化滚动轴承全寿命周期实验数据验证了其有效性。结果表明,如果先验参数不准确,基于概率统计的方法的预测效果将受到很大影响。退化模型不能准确地适应于单个轴承。基于人工智能和状态监测的预测方法在训练样本较少的情况下更加准确,输出的剩余使用寿命预测区间具有更高的可靠性。因此,结合其他模型对智能算法进行改进,提高其RUL预测的准确性是解决在线预测问题的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信