A Pressure Correction Projection Finite Element Method for The 2D/3D Time-Dependent Thermomicropolar Fluid Problem

Y. Ren, Demin Liu
{"title":"A Pressure Correction Projection Finite Element Method for The 2D/3D Time-Dependent Thermomicropolar Fluid Problem","authors":"Y. Ren, Demin Liu","doi":"10.48550/arXiv.2203.15419","DOIUrl":null,"url":null,"abstract":"In this paper, the pressure correctionfinite element method is proposed for the 2D/3D time-dependent thermomicropolarfluid equations. Thefirst-order and second-order backward difference formulas (BDF) are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. Finally, some numerical examples are given to show the effectiveness and reliability of the proposed method, which can be used to simulate the problem with high Rayleigh number.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.15419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the pressure correctionfinite element method is proposed for the 2D/3D time-dependent thermomicropolarfluid equations. Thefirst-order and second-order backward difference formulas (BDF) are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. Finally, some numerical examples are given to show the effectiveness and reliability of the proposed method, which can be used to simulate the problem with high Rayleigh number.
二维/三维时变热微极流体问题的压力校正投影有限元法
本文提出了二维/三维时变热微极流体方程的压力修正有限元法。采用一阶和二阶后向差分公式(BDF)逼近时间导数项,证明了一阶半离散格式的稳定性分析和误差估计。最后,通过数值算例验证了所提方法的有效性和可靠性,该方法可用于高瑞利数问题的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信