{"title":"Local rigidity, bifurcation, and stability of $H_f$-hypersurfaces in weighted Killing warped products","authors":"M. Velásquez, H. D. de Lima, André F. A. Ramalho","doi":"10.5565/publmat6512113","DOIUrl":null,"url":null,"abstract":"In a weighted Killing warped productMn f ×ρR with warping metric 〈 , 〉M+ ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x : Σn ↪→Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f -Laplacian of Σn. 2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6512113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a weighted Killing warped productMn f ×ρR with warping metric 〈 , 〉M+ ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x : Σn ↪→Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f -Laplacian of Σn. 2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.