{"title":"Nonlocal symmetry of CMA generates ASD Ricci-flat metric with no Killing vectors","authors":"M. Sheftel","doi":"10.1063/5.0022021","DOIUrl":null,"url":null,"abstract":"The complex Monge-Ampere equation $(CMA)$ in a two-component form is treated as a bi-Hamiltonian system. We present explicitly the first nonlocal symmetry flow in the hierarchy of this system. An invariant solution of $CMA$ with respect to this nonlocal symmetry is constructed which, being a noninvariant solution in the usual sense, does not undergo symmetry reduction in the number of independent variables. We also construct the corresponding 4-dimensional anti-self-dual (ASD) gravitational metric with either Euclidean or neutral signature. It admits no Killing vectors which is one of characteristic features of the famous gravitational instanton $K3$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0022021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The complex Monge-Ampere equation $(CMA)$ in a two-component form is treated as a bi-Hamiltonian system. We present explicitly the first nonlocal symmetry flow in the hierarchy of this system. An invariant solution of $CMA$ with respect to this nonlocal symmetry is constructed which, being a noninvariant solution in the usual sense, does not undergo symmetry reduction in the number of independent variables. We also construct the corresponding 4-dimensional anti-self-dual (ASD) gravitational metric with either Euclidean or neutral signature. It admits no Killing vectors which is one of characteristic features of the famous gravitational instanton $K3$.