{"title":"Extending a Chebyshev Subspace to a Weak Chebyshev Subspace ofHigher Dimension and Related Results","authors":"Mansour Alyazidi-Asiry","doi":"10.4172/2168-9679.1000347","DOIUrl":null,"url":null,"abstract":"Let G={g1,…,gn} be an n-dimensional Chebyshev sub-space of C[a, b] such that 1∉G and U=(u0, u1 ,…,un ) be an (n+1)-dimensional subspace of C[a, b] where u0 =1, ui =gi , i=1….. n. Under certain restriction on G, we proved that U is a Chebyshev subspace if and only if it is a Weak Chebyshev subspace. In addition, some other related results are established.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G={g1,…,gn} be an n-dimensional Chebyshev sub-space of C[a, b] such that 1∉G and U=(u0, u1 ,…,un ) be an (n+1)-dimensional subspace of C[a, b] where u0 =1, ui =gi , i=1….. n. Under certain restriction on G, we proved that U is a Chebyshev subspace if and only if it is a Weak Chebyshev subspace. In addition, some other related results are established.