A. Kumar, K. Sudhakara, B. P. Kumar, A. Raghavender, S. Ravi, Dunkana Negussa Keniec, Yong‐Ill Lee
{"title":"Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions","authors":"A. Kumar, K. Sudhakara, B. P. Kumar, A. Raghavender, S. Ravi, Dunkana Negussa Keniec, Yong‐Ill Lee","doi":"10.26655/AJNANOMAT.2018.9.1","DOIUrl":null,"url":null,"abstract":"Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles,","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2018.9.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles,