{"title":"Jacobson's lemma for the generalized \\(n\\)-strong Drazin inverses in rings and in operator algebras","authors":"Yanxun Ren, Lining Jiang","doi":"10.3336/gm.57.1.01","DOIUrl":null,"url":null,"abstract":"In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \\(n\\)-strong Drazin inverses in a ring, and prove that \\(1-ac\\) is generalized \\(n\\)-strong Drazin invertible if and only if \\(1-ba\\) is generalized \\(n\\)-strong Drazin invertible, provided that \\(a(ba)^{2}=abaca=acaba=(ac)^{2}a\\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"28 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \(n\)-strong Drazin inverses in a ring, and prove that \(1-ac\) is generalized \(n\)-strong Drazin invertible if and only if \(1-ba\) is generalized \(n\)-strong Drazin invertible, provided that \(a(ba)^{2}=abaca=acaba=(ac)^{2}a\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.
期刊介绍:
Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.