Localization and discrete probability function of Szegedy's quantum search one-dimensional cycle with self-loops

Mengke Xu, Zhihao Liu, Hanwu Chen, S. Zheng
{"title":"Localization and discrete probability function of Szegedy's quantum search one-dimensional cycle with self-loops","authors":"Mengke Xu, Zhihao Liu, Hanwu Chen, S. Zheng","doi":"10.26421/QIC20.15-16-2","DOIUrl":null,"url":null,"abstract":"We study the localization and the discrete probability function of a quantum search on the one-dimensional (1D) cycle with self-loops for n vertices and m marked vertices. First, unmarked vertices have no localization since the quantum search on unmarked vertices behaves like the 1D three-state quantum walk (3QW) and localization does not occur with nonlocal initial states on a 3QW, according to residue calculations and the Riemann-Lebesgue theorem. Second, we show that localization does occur on the marked vertices and derive an analytic expression for localization by the degenerate 1eigenvalues contributing to marked vertices. Therefore localization can contribute to a quantum search. Furthermore, we emphasize that localization comes from the self-loops. Third, using the localization of a quantum search, the asymptotic average probability distribution (AAPD) and the discrete probability function (DPF) of a quantum search are obtained. The DPF shows that Szegedys quantum search on the 1D cycle with self-loops spreads ballistically.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"56 1","pages":"1281-1303"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC20.15-16-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the localization and the discrete probability function of a quantum search on the one-dimensional (1D) cycle with self-loops for n vertices and m marked vertices. First, unmarked vertices have no localization since the quantum search on unmarked vertices behaves like the 1D three-state quantum walk (3QW) and localization does not occur with nonlocal initial states on a 3QW, according to residue calculations and the Riemann-Lebesgue theorem. Second, we show that localization does occur on the marked vertices and derive an analytic expression for localization by the degenerate 1eigenvalues contributing to marked vertices. Therefore localization can contribute to a quantum search. Furthermore, we emphasize that localization comes from the self-loops. Third, using the localization of a quantum search, the asymptotic average probability distribution (AAPD) and the discrete probability function (DPF) of a quantum search are obtained. The DPF shows that Szegedys quantum search on the 1D cycle with self-loops spreads ballistically.
带自环的Szegedy量子搜索一维循环的局部化和离散概率函数
研究了具有n个顶点和m个标记顶点的一维自环上量子搜索的局部化和离散概率函数。首先,根据残差计算和Riemann-Lebesgue定理,未标记顶点没有定位,因为在未标记顶点上的量子搜索行为类似于一维三态量子行走(3QW),并且在3QW上的非局部初始状态下不会发生定位。其次,我们证明了定位确实发生在标记的顶点上,并通过标记顶点的退化特征值导出了定位的解析表达式。因此,局部化有助于量子搜索。此外,我们强调定位来自自循环。第三,利用量子搜索的局域性,得到了量子搜索的渐近平均概率分布(AAPD)和离散概率函数(DPF)。DPF表明,Szegedys量子搜索在具有自环的一维循环上呈弹道扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信