Quantization Conductivity of Surface Electrons over Superfluid Helium at the Charged Substrate Channels

V. A. Nikolaenko, A. Smorodin, S. Sokolov
{"title":"Quantization Conductivity of Surface Electrons over Superfluid Helium at the Charged Substrate Channels","authors":"V. A. Nikolaenko, A. Smorodin, S. Sokolov","doi":"10.1109/NAP51885.2021.9568517","DOIUrl":null,"url":null,"abstract":"The carry features of a quasi-one-dimensional surface electrons (Q1D-SEs) over the superfluid helium at the charged profiled substrate is investigated by the transport method. Substrate is row the optical fiber segments. The experiments carried out in temperature range 1.5 K-0.6 K at electron densities up to 109 cm-2. According a phase diagram “electron gas - Wigner crystal” research performed in the electron gas region at temperature higher the Fermi energy and at electron density far “quantum melting». The substrate electrostatic model in the electric field demonstrates the potential modulation in the cross section lets to charge the fiber tops increasing thereby the Q1D-SE potential well. The surface electrons motion satisfies the quantization condition in view both the temperature and the electron relaxation time. Lower of some temperature the conductivity is a steps-like and it differential is a peaks-like simile to the electron states density with the peak distance according energy spectrum. Pronounced steps at lowering temperature can be caused the electron density redistribution on the energy levels and the SEs thermo-activation motion near the channel bounders.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"62 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The carry features of a quasi-one-dimensional surface electrons (Q1D-SEs) over the superfluid helium at the charged profiled substrate is investigated by the transport method. Substrate is row the optical fiber segments. The experiments carried out in temperature range 1.5 K-0.6 K at electron densities up to 109 cm-2. According a phase diagram “electron gas - Wigner crystal” research performed in the electron gas region at temperature higher the Fermi energy and at electron density far “quantum melting». The substrate electrostatic model in the electric field demonstrates the potential modulation in the cross section lets to charge the fiber tops increasing thereby the Q1D-SE potential well. The surface electrons motion satisfies the quantization condition in view both the temperature and the electron relaxation time. Lower of some temperature the conductivity is a steps-like and it differential is a peaks-like simile to the electron states density with the peak distance according energy spectrum. Pronounced steps at lowering temperature can be caused the electron density redistribution on the energy levels and the SEs thermo-activation motion near the channel bounders.
超流氦表面电子在带电衬底通道上的量子化电导率
用输运方法研究了准一维表面电子(q1d - se)在带电型衬底超流氦上的携带特性。衬底是排在光纤段的。实验在1.5 K-0.6 K温度范围内进行,电子密度高达109 cm-2。根据相图“电子气-维格纳晶体”的研究,在温度高于费米能量的电子气区和电子密度远为“量子熔化”的电子气区进行了研究。电场中的衬底静电模型表明,截面上的电位调制使光纤顶部带电,从而增加了Q1D-SE电位。考虑到温度和电子弛豫时间,表面电子运动满足量子化条件。在某一温度较低时,电导率呈阶梯状,其差值与电子态密度呈峰状,随能谱的峰距而变化。降低温度的显著步骤可引起电子密度在能级上的重新分布和通道边界附近的SEs热活化运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信