An Objective Comparison Methodology of Edge Detection Algorithms Using a Structure from Motion Task

M. Shin, Dmitry Goldgof, K. Bowyer
{"title":"An Objective Comparison Methodology of Edge Detection Algorithms Using a Structure from Motion Task","authors":"M. Shin, Dmitry Goldgof, K. Bowyer","doi":"10.1109/CVPR.1998.698608","DOIUrl":null,"url":null,"abstract":"This paper presents a task-oriented evaluation methodology for edge detectors. Performance is measured based on the task of structure from motion. Eighteen real image sequences from 2 different scenes varying in the complexity and scenery types are used. The task-level ground truth for each image sequence is manually specified in terms of the 3D motion and structure. An automated tool computes the accuracy of the motion and structure achieved using the set of edge maps. Parameter sensitivity and execution speed are also analyzed. Four edge detectors are compared. All implementations and data sets are publicly available.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"56 1","pages":"190-195"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1998.698608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

This paper presents a task-oriented evaluation methodology for edge detectors. Performance is measured based on the task of structure from motion. Eighteen real image sequences from 2 different scenes varying in the complexity and scenery types are used. The task-level ground truth for each image sequence is manually specified in terms of the 3D motion and structure. An automated tool computes the accuracy of the motion and structure achieved using the set of edge maps. Parameter sensitivity and execution speed are also analyzed. Four edge detectors are compared. All implementations and data sets are publicly available.
基于运动任务结构的边缘检测算法的客观比较方法
提出了一种面向任务的边缘检测器评价方法。性能是基于从运动中构造的任务来衡量的。使用了来自2个不同场景的18个真实图像序列,其复杂性和场景类型各不相同。每个图像序列的任务级基础真值是根据3D运动和结构手动指定的。一个自动化工具计算运动和结构的精度,使用一组边缘图。分析了参数灵敏度和执行速度。对四种边缘检测器进行了比较。所有的实现和数据集都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信