GAS-CONDENSATE FLUID PVT MODEL QUALITY CHECK BASED ON THE CONCEPT OF A SINGLE-CELL SIMULATION MODEL

O. Burachok, D. Pershyn, S. Matkivskyi, Y. Bikman, O. Kondrat, Viacheslav Yuriiovych Filatov
{"title":"GAS-CONDENSATE FLUID PVT MODEL QUALITY CHECK BASED ON THE CONCEPT OF A SINGLE-CELL SIMULATION MODEL","authors":"O. Burachok, D. Pershyn, S. Matkivskyi, Y. Bikman, O. Kondrat, Viacheslav Yuriiovych Filatov","doi":"10.20998/10.20998/2079-0821.2020.02.07","DOIUrl":null,"url":null,"abstract":"The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.
基于单细胞仿真模型概念的凝析液PVT模型质量校核
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信