{"title":"Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate","authors":"S. C. Nwokolo, Christiana Queennet Otse","doi":"10.17737/tre.2019.5.3.00107","DOIUrl":null,"url":null,"abstract":"In this paper, measured data of solar radiation was applied to develop forty-three (43) empirical models for estimation of monthly average diffuse solar radiation using clearness index, sunshine duration and a combination of them as predictors. The data covered a period of two years from May 2015 to April 2017 and was measured at Mehran University of Engineering and Technology, Hyderabad, Pakistan. Through a comprehensive statistical performance analysis, 43 dimensional models developed were tested for constructing the most accurate regression model to predict the monthly mean daily diffuse solar radiation in Hyderabad, Pakistan. On the whole, the model 42 – a hybrid of sunshine duration and clearness index predictors of diffuse fraction outperformed the remaining models proposed in this study. The best model (model 42) was then compared with 5 models and 5 measured data of diffuse solar radiation available in the literature and the NASA database by applying statistical indicators such as MBE, MPE, RMSE, RRMSE, R 2 and GPI. Through the analysis, the hybrid of sunshine duration and clearness index predictors of diffuse fraction model (model 42) was selected as the most appropriate model. The study concluded that the proposed hybrid model can serve as a baseline for the design of photovoltaic systems and estimate the monthly mean daily diffuse solar radiation on the horizontal surface for Hyderabad, Pakistan and other locations with similar local climate conditions. Citation: Nwokolo, S.C. and Otse, C.Q. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5, 307-332. DOI: 10.17737/tre.2019.5.3.00107","PeriodicalId":23305,"journal":{"name":"Trends in Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17737/tre.2019.5.3.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, measured data of solar radiation was applied to develop forty-three (43) empirical models for estimation of monthly average diffuse solar radiation using clearness index, sunshine duration and a combination of them as predictors. The data covered a period of two years from May 2015 to April 2017 and was measured at Mehran University of Engineering and Technology, Hyderabad, Pakistan. Through a comprehensive statistical performance analysis, 43 dimensional models developed were tested for constructing the most accurate regression model to predict the monthly mean daily diffuse solar radiation in Hyderabad, Pakistan. On the whole, the model 42 – a hybrid of sunshine duration and clearness index predictors of diffuse fraction outperformed the remaining models proposed in this study. The best model (model 42) was then compared with 5 models and 5 measured data of diffuse solar radiation available in the literature and the NASA database by applying statistical indicators such as MBE, MPE, RMSE, RRMSE, R 2 and GPI. Through the analysis, the hybrid of sunshine duration and clearness index predictors of diffuse fraction model (model 42) was selected as the most appropriate model. The study concluded that the proposed hybrid model can serve as a baseline for the design of photovoltaic systems and estimate the monthly mean daily diffuse solar radiation on the horizontal surface for Hyderabad, Pakistan and other locations with similar local climate conditions. Citation: Nwokolo, S.C. and Otse, C.Q. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5, 307-332. DOI: 10.17737/tre.2019.5.3.00107