Exact Quantifying of Mass Spectrometric Variable Intensity of Analyte Peaks with Respect to Experimental Conditions of Measurements – A Stochastic Dynamic Approach

B. Ivanova, M. Spiteller
{"title":"Exact Quantifying of Mass Spectrometric Variable Intensity of Analyte Peaks with Respect to Experimental Conditions of Measurements – A Stochastic Dynamic Approach","authors":"B. Ivanova, M. Spiteller","doi":"10.1080/22297928.2022.2142844","DOIUrl":null,"url":null,"abstract":"Abstract The study provides new function tested on labetalol in large infusion volumes (Vinf = 80-115 µL) via electrospray ionization mass spectrometry, tandem MS2–MS7 operation modes and collision energy: 0, 0.1, 10, 20, 25, 26, 30 and 35 eV, respectively. It is derived from the stochastic dynamic mass spectrometric equation D”SD = 2.6388.10-17.(-2), which exactly quantifies analyte concentration in solution. Also, it determines 3D conformations and electronic structures. The description of mass spectrometric intensity data as random variables and the shown relation, there are written two new linear functions among D”SD parameters, average total intensity values of fragmentation peaks, infusion volume, and collision energy. They introduce covariance of datasets of variables per short span of scan time of ions in any experimental conditions “l” and “m”. They are: D”SD;m,l = D”SD,l + D”SD,m + 5.2776.10-17.{–.}≈+ and +≈|rl,m|.sd(yEr±)1.sd(yEr±)m. Those relations yields to new formula D”SD,l+ D”SD,m = |rl,m|.sd(yEr±)l.sd(yEr±)m, providing exact function of mass spectrometric variable intensity of any peaks of analyte ion in any two sets of experimental conditions of measurements and diffusion parameters according to the first formula. Correlation between theory and experiment of fragmentation processes of labetalol shows |r|=1–0.99999. Chemometrics is used. GRAPHICAL ABSTRACT","PeriodicalId":7793,"journal":{"name":"Analytical Chemistry Letters","volume":"16 1","pages":"542 - 561"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22297928.2022.2142844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The study provides new function tested on labetalol in large infusion volumes (Vinf = 80-115 µL) via electrospray ionization mass spectrometry, tandem MS2–MS7 operation modes and collision energy: 0, 0.1, 10, 20, 25, 26, 30 and 35 eV, respectively. It is derived from the stochastic dynamic mass spectrometric equation D”SD = 2.6388.10-17.(-2), which exactly quantifies analyte concentration in solution. Also, it determines 3D conformations and electronic structures. The description of mass spectrometric intensity data as random variables and the shown relation, there are written two new linear functions among D”SD parameters, average total intensity values of fragmentation peaks, infusion volume, and collision energy. They introduce covariance of datasets of variables per short span of scan time of ions in any experimental conditions “l” and “m”. They are: D”SD;m,l = D”SD,l + D”SD,m + 5.2776.10-17.{–.}≈+ and +≈|rl,m|.sd(yEr±)1.sd(yEr±)m. Those relations yields to new formula D”SD,l+ D”SD,m = |rl,m|.sd(yEr±)l.sd(yEr±)m, providing exact function of mass spectrometric variable intensity of any peaks of analyte ion in any two sets of experimental conditions of measurements and diffusion parameters according to the first formula. Correlation between theory and experiment of fragmentation processes of labetalol shows |r|=1–0.99999. Chemometrics is used. GRAPHICAL ABSTRACT
相对于测量的实验条件,质谱分析物峰的可变强度的精确定量-随机动态方法
摘要采用电喷雾电离质谱法,采用MS2-MS7串联工作模式,碰撞能量分别为0、0.1、10、20、25、26、30和35 eV,对大输液量(Vinf = 80-115µL)的拉贝他洛尔进行了新的功能检测。它由随机动态质谱方程D”SD = 2.6388.10-17.(-2)推导而来,能准确地定量测定溶液中被分析物的浓度。此外,它还决定了三维构象和电子结构。将质谱强度数据描述为随机变量,并根据所示关系,写出了D”SD参数、破碎峰平均总强度值、注入体积和碰撞能量之间的两个新的线性函数。它们在任何实验条件“l”和“m”中引入了每短时间内离子扫描时间的变量数据集的协方差。SD: D”;m, l = D“SD, l + D“SD, m + 5.2776.10-17。{-。}≈+和+≈|rl,m|.sd(yEr±)1.sd(yEr±)m。这些关系得到了新的公式D " SD,l+ D " SD,m = 1 / rl,m = 1 / rl . SD (yEr±)l. SD (yEr±)m,给出了在任意两组测量实验条件和扩散参数下,分析物离子任意峰的质谱变强度的精确函数。拉贝他洛尔破碎过程的理论与实验的相关性表明:|r|= 1-0.99999。使用化学计量学。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信