The Calderón-Zygmund theory for elliptic problems with measure data

IF 1.2 2区 数学 Q1 MATHEMATICS
G. Mingione
{"title":"The Calderón-Zygmund theory for elliptic problems with measure data","authors":"G. Mingione","doi":"10.2422/2036-2145.2007.2.01","DOIUrl":null,"url":null,"abstract":"We consider non-linear elliptic equations having a measure in the right hand side, of the type div a(x, Du) = μ, and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderon-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates. To the memory of Vic Mizel, mathematician and gentleman","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"1 1","pages":"195-261"},"PeriodicalIF":1.2000,"publicationDate":"2006-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"333","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2007.2.01","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 333

Abstract

We consider non-linear elliptic equations having a measure in the right hand side, of the type div a(x, Du) = μ, and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderon-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates. To the memory of Vic Mizel, mathematician and gentleman
具有测量数据的椭圆问题的Calderón-Zygmund理论
考虑一类右边测度为div a(x, Du) = μ的非线性椭圆方程,并证明其解的可微性和可积性。给出了Marcinkiewicz空间中的新估计,并分析了测量基准密度性质对解的正则性的影响,从而建立了适合该问题的Calderon-Zygmund理论。本文给出了所有的正则性结果,并给出了显式的局部先验估计。为了纪念维克·米泽尔,数学家和绅士
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信