{"title":"The list Viterbi training algorithm and its application to keyword search over databases","authors":"Silvia Rota, S. Bergamaschi, F. Guerra","doi":"10.1145/2063576.2063808","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMMs) are today employed in a variety of applications, ranging from speech recognition to bioinformatics. In this paper, we present the List Viterbi training algorithm, a version of the Expectation-Maximization (EM) algorithm based on the List Viterbi algorithm instead of the commonly used forward-backward algorithm. We developed the batch and online versions of the algorithm, and we also describe an interesting application in the context of keyword search over databases, where we exploit a HMM for matching keywords into database terms. In our experiments we tested the online version of the training algorithm in a semi-supervised setting that allows us to take into account the feedbacks provided by the users.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"12 1","pages":"1601-1606"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Hidden Markov Models (HMMs) are today employed in a variety of applications, ranging from speech recognition to bioinformatics. In this paper, we present the List Viterbi training algorithm, a version of the Expectation-Maximization (EM) algorithm based on the List Viterbi algorithm instead of the commonly used forward-backward algorithm. We developed the batch and online versions of the algorithm, and we also describe an interesting application in the context of keyword search over databases, where we exploit a HMM for matching keywords into database terms. In our experiments we tested the online version of the training algorithm in a semi-supervised setting that allows us to take into account the feedbacks provided by the users.