A. Wakisaka, H. Abdoul-Carime, Y. Yamamoto, Y. Kiyozumi
{"title":"Non-ideality of binary mixtures Water[ndash ]methanol and water[ndash ]acetonitrile from the viewpoint of clustering structure","authors":"A. Wakisaka, H. Abdoul-Carime, Y. Yamamoto, Y. Kiyozumi","doi":"10.1039/A705777F","DOIUrl":null,"url":null,"abstract":"Water–methanol and water–acetonitrile, which show exothermic and endothermic mixing, respectively, represent good contrast in non-ideality of a binary mixture. The microscopic structure observed through the mass-spectrometric analysis of clusters isolated from solution also shows good contrast between these binary mixtures as follows: (1) methanol molecules have substitutional interaction with water clusters, while acetonitrile molecules have additional interaction with water clusters; (2) the clustering of methanol molecules are promoted in the presence of water; on the contrary, the acetonitrile clusters are disintegrated in the presence of water. Such findings could partially explain the non-ideality of these binary mixtures on the basis of the cluster structures.","PeriodicalId":17286,"journal":{"name":"Journal of the Chemical Society, Faraday Transactions","volume":"13 1","pages":"369-374"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chemical Society, Faraday Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A705777F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115
Abstract
Water–methanol and water–acetonitrile, which show exothermic and endothermic mixing, respectively, represent good contrast in non-ideality of a binary mixture. The microscopic structure observed through the mass-spectrometric analysis of clusters isolated from solution also shows good contrast between these binary mixtures as follows: (1) methanol molecules have substitutional interaction with water clusters, while acetonitrile molecules have additional interaction with water clusters; (2) the clustering of methanol molecules are promoted in the presence of water; on the contrary, the acetonitrile clusters are disintegrated in the presence of water. Such findings could partially explain the non-ideality of these binary mixtures on the basis of the cluster structures.